Ambiguous Region Matching and Boundary Pixel Optimization for Stereo Computation

Article Preview

Abstract:

In this paper, we present a stereo matching algorithm based on planar surface hypothesis. It improves the results of low texture regions and mixed pixels on object boundaries. First, regions are segmented by applying the mean-shift segmentation method. Then we propose a coarse-to-fine algorithm to increase the reliable correspondences in low texture regions. Third, the Belief Propagation algorithm is used to optimize disparity plane labeling. Finally, for a mixed pixel, we utilize the results of the depth plane and the local region of it to regulate its disparity. Experimental results using the Middlebury stereo test show that the performance of our method is high.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

735-740

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nguyen H. T. and Minh N. Do, Image-based Rendering with Depth Information Using the Propagation Algorithm[C], Proceedings of Acoustics, Speech and Signal Processing, USA, 2005, pp.589-592.

DOI: 10.1109/icassp.2005.1415473

Google Scholar

[2] H. Tao, H. Sawhney, and R. Kumar, A global matching framework for stereo computation, In ICCV, 2001, pp.532-539.

Google Scholar

[3] Andreas Klaus, Mario Sormann, and Konrad Karner, Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure, In ICPR, 2006, pp.15-18.

DOI: 10.1109/icpr.2006.1033

Google Scholar

[4] J. Sun, Y. Li, S. Kang, and H. Shum, Symmetric stereo matching for occlusion handling, In CVPR, 2005, p.399–406.

DOI: 10.1109/cvpr.2005.337

Google Scholar

[5] Heiko Hirschmuller, Improvements in Real-Time Correlation-Based Stereo Vision, In S MBV, 2001, pp.141-148.

DOI: 10.1109/smbv.2001.988772

Google Scholar

[6] P. F. Felzenszwalb and D. P. Huttenlocher, Efficient belief propagation for early vision, In CVPR, 2004, p.261–268.

Google Scholar

[7] T. Kanade and M. Okutomi, A stereo matching algorithm with an adaptive window: theory and experiment, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, pp.920-932, Sep. (1994).

DOI: 10.1109/34.310690

Google Scholar

[8] Dominik M. Aufderheide, Markus Steffens, Stephan Kieneke and Werner Krybus, Texture Analysis for Adopting of Correlation Windows In Stereo Correspondence, In ICVIP, 2009, pp.229-234.

Google Scholar

[9] S. W. Hasinoff, S. B. Kang, and R. Szeliski, Boundary matting for view synthesis, In CVIU, 2006, pp.22-32.

Google Scholar

[10] Yuichi Taguchi, Bennett Wilburn, and C. Lawrence Zitnick, Stereo Reconstruction with Mixed Pixels Using Adaptive Over-Segmentation, In CVPR, 2008, pp.1-8.

DOI: 10.1109/cvpr.2008.4587691

Google Scholar

[11] M. Bleyer and M. Gelautz, A layered stereo algorithm using image segmentation and global visibility constraints, In ICIP, 2004, pp.297-300.

DOI: 10.1109/icip.2004.1421743

Google Scholar

[12] F. Zhou, W. Yang, and Q. Liao, A coarse-to-fine subpixel registration method to recover local perspective deformation in the application of image super-resolution, IEEE Trans. Image Process, vol. 21, no. 1, p.53–66, Jan. (2012).

DOI: 10.1109/tip.2011.2159731

Google Scholar

[13] M. Bleyer and M. Gelautz, A layered stereo matching algorithm using image segmentation and global visibility constraints, in ISPRS, 59(3), p.128–150, May (2005).

DOI: 10.1016/j.isprsjprs.2005.02.008

Google Scholar

[14] D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, In IJCV, 47(1/2/3): 7-42, April-June (2002).

DOI: 10.1109/smbv.2001.988771

Google Scholar

[15] H. Hirschmüller and D. Scharstein, Evaluation of cost functions for stereo matching, In CVPR, 2007, pp.1-8.

Google Scholar

[16] A. Berman, P. Vlahos and A. Dadourian, Comprehensive method for removing from an image the back-ground surrounding a selected object, U.S., Patent No. 6, 134, 346, (2000).

Google Scholar