[1]
K. Gu, V. L. Kharitonov, and J. Chen, Stability of time-delay systems, Birkhauser, (2003).
Google Scholar
[2]
Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of Control, vol. 74, pp.1447-1455, (2001).
DOI: 10.1080/00207170110067116
Google Scholar
[3]
Y. S. Lee, Y. S. Moon, W. H. Kwon, and P. G. Park, Delay-dependent robust control for uncertain systems with a state-delay, Automatica, vol. 40, pp.65-72, (2004).
DOI: 10.1016/j.automatica.2003.07.004
Google Scholar
[4]
P. Park and J. W. Ko, Stability and robust stability for systems with time-varying delay, Automatica, vol. 43, pp.1855-1858, (2007).
DOI: 10.1016/j.automatica.2007.02.022
Google Scholar
[5]
Y. He, Q. G. Wang, C. Lin, and M. Wu, Delay-range-dependent stability for systems with time-varying delay, Automatica, vol. 43, pp.371-376, (2007).
DOI: 10.1016/j.automatica.2006.08.015
Google Scholar
[6]
X. L. Zhu, Y. Wang and G. H. Yang, New stability criteria for continuous-time systems with interval time-varying delay, IET Control Theory and Applications, vol. 4, no. 6, pp.1101-1107, (2010).
DOI: 10.1049/iet-cta.2009.0176
Google Scholar
[7]
X. L. Zhu and G. H. Yang, New results of stability analysis for systems with time-varying delay, International Journal of Robust and Nonlinear Control, vol. 20, pp.596-606, (2010).
DOI: 10.1002/rnc.1456
Google Scholar
[8]
S. Y. Xu and J. Lam, Improved delay-dependent stability criteria for time-delay systems, IEEE Transactions on Automatic Control, vol. 50, pp.384-387, (2005).
DOI: 10.1109/tac.2005.843873
Google Scholar
[9]
S. Boyd, L. El. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequality in Systems and Control Theory. Philadelphia, PA: SIAM, (1994).
DOI: 10.1137/1.9781611970777
Google Scholar