[1]
Kaiyang Yang and Robert Orsi, Generalized pole placement via static output feedback: A methodology based on projections, Automatica, Vol. 42, December 2006, pp.2143-2150.
DOI: 10.1016/j.automatica.2006.06.021
Google Scholar
[2]
Guangying Zhang and Alexander Lanzon, Relationship between poles and zeros of input-output and chain-scattering systems Systems & Control Letters, Vol. 55, April 2006, pp.314-320.
DOI: 10.1016/j.sysconle.2005.08.007
Google Scholar
[3]
Runyi Yu and Dianhui Wang, Structural properties and poles assignability of LTI singular systems under output feedback, Automatica, Vol. 39, April 2003, pp.685-692.
DOI: 10.1016/s0005-1098(02)00283-2
Google Scholar
[4]
Sanqing Hu and Jun Wang, A gradient flow approach to on-line robust pole assignment for synthesizing output feedback control systems, Automatica, Vol. 38, November 2002, p.1959-(1968).
DOI: 10.1016/s0005-1098(02)00144-9
Google Scholar
[5]
A. Eremenko and A. Gabrielov, Counterexamples to pole placement by static output feedback, Linear Algebra and its Applications, Vol. 15, August 2002, pp.211-218.
DOI: 10.1016/s0024-3795(01)00443-8
Google Scholar
[6]
K. H. Kiritsis, A necessary condition for pole assignment by constant output feedback, Systems & Control Letters, Vol. 45, April 2002, pp.317-320.
DOI: 10.1016/s0167-6911(01)00192-x
Google Scholar
[7]
Danchi Jiang and Jun Wang, Augmented gradient flows for on-line robust pole assignment via state and output feedback, Automatica, Vol. 38, February 2002, pp.279-286.
DOI: 10.1016/s0005-1098(01)00200-x
Google Scholar
[8]
Chia-chi Tsui, A new dynamic output feedback compensator design for pole assignment, Journal of the Franklin Institute, Vol. 336, May 1999, pp.665-674.
DOI: 10.1016/s0016-0032(98)00008-8
Google Scholar
[9]
Dan-chi Jiang and J. B. Moore, Least squares pole assignment by memoryless output feedback , Systems & Control Letters, Vol. 29, September 1996, pp.31-42.
DOI: 10.1016/0167-6911(96)00044-8
Google Scholar
[10]
John Leventides and Nicos Karcanias, Global asymptotic linearisation of the pole placement map: a closed-form solution for the constant output feedback problem, Automatica, Vol. 31, September 1995, pp.1303-1309.
DOI: 10.1016/0005-1098(95)00047-z
Google Scholar
[11]
John Leventides and Nicos Karcanias, A new sufficient condition for arbitrary pole placement by real constant output feedback, Systems & Control Letters, Vol. 18, March 1992, pp.191-199.
DOI: 10.1016/0167-6911(92)90005-d
Google Scholar
[12]
Leventides, J.; Karcanias, N. Sufficient conditions for pole assignment under decentralised output feedback, Proceedings of IEEE Conference on Decision and Control, Dec. 1993, p.3756 – 3761.
DOI: 10.1109/cdc.1993.325920
Google Scholar
[13]
Djaferis, T.; Narayana, A. A new sufficient condition for generic pole assignment by output feedback;, IEEE Transactions on Automatic Control, Vol. 30, Mar 1985, p.280 – 283.
DOI: 10.1109/tac.1985.1103928
Google Scholar
[14]
V. L. Syrmos, C. T. Abdallah, and K. Grigoriadis, Static output feedback-a survey, Automatica, vol. 33, 1997, pp.125-137.
DOI: 10.1016/s0005-1098(96)00141-0
Google Scholar
[15]
A. Trofino-Neto and V. Kucera, Stabilization via static output feedback, IEEE Trans. Autom. Control, vol. 38, 1993, pp.764-765.
DOI: 10.1109/9.277243
Google Scholar
[16]
V. Kucera and C. de Souza, A necessary and sufficient condition for output feedback stabilizability, Automatica, vol. 10, 1995, pp.1357-1359.
DOI: 10.1016/0005-1098(95)00048-2
Google Scholar
[17]
G. Garcia, B. Pradin, and F. Zeng, Stabilization of discrete time linear systems by static output feedback, IEEE Trans. Autom. Control, vol. 46, 2001, p.1954-(1958).
DOI: 10.1109/9.975499
Google Scholar
[18]
J. C. Geromel, C. C. deSouza, and R. E. Skelton, Static output feedback controllers: Stability and convexity, IEEE Trans. Autom. Control, vol. 43, 1998, pp.120-125.
DOI: 10.1109/9.654912
Google Scholar
[19]
D. Henrion and J. B. Lasserre, Convergent relaxations of polynomial matrix inequalities and static output feedback, IEEE Trans. Autom. Control, vol. 51, 2006, pp.192-202.
DOI: 10.1109/tac.2005.863494
Google Scholar
[20]
J. C. Geromel, P. L. D. Peres, and S. R. Souza, Convex analysis of output feedback control problems: Robust stability and performance, IEEE Trans. Autom. Control, vol. 41, 1996, pp.997-1003.
DOI: 10.1109/9.508904
Google Scholar
[21]
L. E. Ghaoui, F. Oustry, and M. Ait Rami, A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Trans. Autom. Control, vol. 42, 1997, pp.1171-1175.
DOI: 10.1109/9.618250
Google Scholar
[22]
Y. -Y. Cao, J. Lam, and Y. X. Sun, Static output feedback stabilization: An ILMI approach, Automatica, vol. 34, 1998, pp.1641-1645.
DOI: 10.1016/s0005-1098(98)80021-6
Google Scholar
[23]
F. Leibfritz, An LMI-based algorithm for designing suboptimal static output feedback controllers, SIAM. J. Control Optim., vol. 39, 2001, pp.1711-1735.
DOI: 10.1137/s0363012999349553
Google Scholar
[24]
A. Graham, Kronecker Products and Matrix Calculus with Applications, Chichester, West Sussex. England: Ellis Honvood. (1981).
Google Scholar
[25]
Fletcher LR, Some necessary and sufficient condition for eigenstructure assignment, International Journal of Control, Vol. 42, 1985, pp.1457-1468.
DOI: 10.1080/00207178508933437
Google Scholar