Output Feedback Stabilization Based on General Solution of Matrix Equation

Article Preview

Abstract:

This paper gives a method for static output feedback stabilization of linear time invariant systems. A general solution of a matrix equation concerning system parameter matrices is used to construct a state coordinate transformation. Then, the closed-loop system is equivalent to a transitional form, whose pivotal isolated subsystem can be stabilized via a gain matrix. This gain matrix is the free variable of the general solution. Furthermore, using this general solution of the matrix equation, the original problem is reformulated to a low dimension system, which can be easily solved. Numerical example is given to illustrate the validity of the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

903-909

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. L. Syrmos, C. T. Abdallah, and K. Grigoriadis, Static output feedback-a survey, Automatica, vol. 33, 1997, pp.125-137.

DOI: 10.1016/s0005-1098(96)00141-0

Google Scholar

[2] A. Trofino-Neto and V. Kucera, Stabilization via static output feedback, IEEE Trans. Autom. Control, vol. 38, 1993, pp.764-765.

DOI: 10.1109/9.277243

Google Scholar

[3] V. Kucera and C. de Souza, A necessary and sufficient condition for output feedback stabilizability, Automatica, vol. 10, 1995, pp.1357-1359.

DOI: 10.1016/0005-1098(95)00048-2

Google Scholar

[4] G. Garcia, B. Pradin, and F. Zeng, Stabilization of discrete time linear systems by static output feedback, IEEE Trans. Autom. Control, vol. 46, 2001, p.1954-(1958).

DOI: 10.1109/9.975499

Google Scholar

[5] J. C. Geromel, C. C. deSouza, and R. E. Skelton, Static output feedback controllers: Stability and convexity, IEEE Trans. Autom. Control, vol. 43, 1998, pp.120-125.

DOI: 10.1109/9.654912

Google Scholar

[6] D. Henrion and J. B. Lasserre, Convergent relaxations of polynomial matrix inequalities and static output feedback, IEEE Trans. Autom. Control, vol. 51, 2006, pp.192-202.

DOI: 10.1109/tac.2005.863494

Google Scholar

[7] J. C. Geromel, P. L. D. Peres, and S. R. Souza, Convex analysis of output feedback control problems: Robust stability and performance, IEEE Trans. Autom. Control, vol. 41, 1996, pp.997-1003.

DOI: 10.1109/9.508904

Google Scholar

[8] L. E. Ghaoui, F. Oustry, and M. Ait Rami, A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Trans. Autom. Control, vol. 42, 1997, pp.1171-1175.

DOI: 10.1109/9.618250

Google Scholar

[9] Y. -Y. Cao, J. Lam, and Y. X. Sun, Static output feedback stabilization: An ILMI approach, Automatica, vol. 34, 1998, pp.1641-1645.

DOI: 10.1016/s0005-1098(98)80021-6

Google Scholar

[10] F. Leibfritz, An LMI-based algorithm for designing suboptimal static output feedback controllers, SIAM. J. Control Optim., vol. 39, 2001, pp.1711-1735.

DOI: 10.1137/s0363012999349553

Google Scholar

[11] D. Rosinova, V. Vesely, and V. Kucera, A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems, KYBERNETIKA, vol. 39, 2003, pp.447-459.

Google Scholar

[12] D. Huang and S. K. Nguang, Robuststatic output feedback controller of fuzzy systems: An ILMI approach, , IEEE Trans. Syst., Man. Cybern. B, Cybern., vol. 36, 2006, pp.216-222.

DOI: 10.1109/tsmcb.2005.856145

Google Scholar

[13] U. Shaked, An LPD approach to robustandstatic output feedback design, IEEE Trans. Autom. Control, vol. 48, 2003, pp.866-872.

DOI: 10.1109/tac.2003.811270

Google Scholar

[14] G. I. Bara and M. Boutayeb, Static output feedback stabilization withperformance for linear discrete-time systems, IEEE Trans. Autom. Control, vol. 50, 2005, pp.250-254.

DOI: 10.1109/tac.2004.841922

Google Scholar

[15] D. Peaucelle and D. Arzelier, Ellipsoidal sets for resilient and robust static output-feedback, IEEE Trans. Autom. Control, vol. 50, 2005, pp.899-904.

DOI: 10.1109/tac.2005.849256

Google Scholar

[16] R. E. Benton and D. A. Smith, A static-output-feedback design procedure for robust emergency lateral control of a highway vehicle, IEEE Trans. Contr. Syst. Technol., vol. 13, 2005, pp.618-623.

DOI: 10.1109/tcst.2004.841681

Google Scholar

[17] D. W. C. Ho and G. P. Lu, Robust stabilization for a class of discretetime nonlinear systems via output feedback: The unified LMI approach, Int. J. Control, vol. 76, 2003, pp.105-115.

DOI: 10.1080/0020717031000067367

Google Scholar

[18] C. A. R. Crusius and A. Trofino, Sufficient LMI conditions for output feedback control problems, IEEE Trans. Autom. Conttol, vol. 44, 1999, pp.1053-1057.

DOI: 10.1109/9.763227

Google Scholar

[19] E. Davison and S. Wang, On pole assignment in linear multivariable systems using output feedback, , IEEE Trans. Autom. Conttol, vol. 20, 1975, pp.516-518.

DOI: 10.1109/tac.1975.1101023

Google Scholar

[20] H. Kimura, On pole assignment by gain output feedback, , IEEE Trans. Autom. Control, vol. 20, 1977, pp.509-516.

DOI: 10.1109/tac.1975.1101028

Google Scholar

[21] H. Kimura, On pole assignment by output feedback, , Int. J. Control, vol. 28, 1978, pp.11-22.

Google Scholar