Regional Pole Placement via Static Output Feedback Based on Coordinate Transformation

Article Preview

Abstract:

This paper focuses on the regional pole placement via static output feedback. Under proper state coordinate transformation with a free matrix variable, the static output feedback gain may be obtained by solving a linear matrix inequality (LMI). The LMI is feasible only if the poles of a dummy control system are in the given LMI region. The free matrix variable can regulate the dummy system as a state feedback gain matrix. So once the free variable is determined, the static output feedback gain matrix may be obtained by an LMI-based method. The main computations do not concern any reduction or enlargement of matrix inequalities. Numerical examples show the effectiveness of the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

916-921

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kaiyang Yang and Robert Orsi, Generalized pole placement via Chilali, M., Gahinet, P., Apkarian, P., "Robust pole placement in LMI Regions, , IEEE Transactions on Automatic Control, Vol. 44, , 1999, pp.2257-2270.

DOI: 10.1109/9.811208

Google Scholar

[2] Chilali, M., Gahinet, P., design with Pole Placement Constraints: an LMI approach, , IEEE Transactions on Automatic Control, 1996, pp.358-367.

DOI: 10.1109/9.486637

Google Scholar

[3] Yang, K.; Orsi, R. Static Output Feedback Pole Placement via a Trust Region Approach, IEEE Transactions on Automatic Control, Vol. 52, 2007, p.2146 – 2150.

DOI: 10.1109/tac.2007.908339

Google Scholar

[4] Jenq-Lang Wu; Tsu-Tian Lee, Optimal static output feedback simultaneous regional pole placement. Systems, IEEE Transactions on Man and Cybernetics, Part B, Vol. 35, 2005, p.881 – 893.

DOI: 10.1109/tsmcb.2005.846650

Google Scholar

[5] Fu, M. Pole placement via static output feedback is NP-hard, IEEE Transactions on Automatic Control, Vol. 49, 2004, p.855 – 857.

DOI: 10.1109/tac.2004.828311

Google Scholar

[6] G. Garcia, S. Tarbouriech, J.M. Gomes da Silva Jr. , E. B. Castelan. Pole assignment in a disk for linear systems by static output feedback, IEE Proc. Control Theory, vol. 151, 2004. pp.706-712.

DOI: 10.1049/ip-cta:20041009

Google Scholar

[7] Carotenuto, L.; Franze, C.; Muraca, P. New computational procedure to the pole placement problem by static output feedback, IEE Proceedings-Control Theory and Applications, Vol. 148, 2001, p.466 – 471.

DOI: 10.1049/ip-cta:20010771

Google Scholar

[8] Kaiyang Yang and Robert Orsi, Generalized pole placement via static output feedback: A methodology based on projections, Automatica, Vol. 42, 2006, pp.2143-2150.

DOI: 10.1016/j.automatica.2006.06.021

Google Scholar

[9] A. Eremenko and A. Gabrielov. Counterexamples to pole placement by static output feedback. Linear Algebra and its Applications, Vol. 15, August 2002, pp.211-218.

DOI: 10.1016/s0024-3795(01)00443-8

Google Scholar

[10] V. Blondel and J. N. Tsitsiklis, NP-hardness of some linear control design problems, SIAMJ. Control Optimiz, 1997, pp.2118-2127.

DOI: 10.1137/s0363012994272630

Google Scholar

[11] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, Static output feedback-A survey, Automatica, , Vol. 33 1997, pp.125-137.

DOI: 10.1016/s0005-1098(96)00141-0

Google Scholar

[12] A. Trofino-Neto and V. Kucera, Stabilization via static output feedback, IEEE Trans. Autom. Control, Vol. 38, 1993, pp.764-765.

DOI: 10.1109/9.277243

Google Scholar

[13] V. Kucera and C. de Souza, A necessary and sufficient condition for output feedback stabilizability, Automatica, Vol. 10, 1995, pp.1357-1359.

DOI: 10.1016/0005-1098(95)00048-2

Google Scholar

[14] G. Garcia, B. Pradin, and F. Zeng, Stabilization of discrete time linear systems by static output feedback, IEEE Trans. Autom. Control, Vol. 46, 2001, p.1954-(1958).

DOI: 10.1109/9.975499

Google Scholar

[15] J. C. Geromel, C. C. deSouza, and R. E. Skelton, Static output feedback controllers: Stability and convexity, IEEE Trans. Autom. Control, Vol. 43, 1998, pp.120-125.

DOI: 10.1109/9.654912

Google Scholar

[16] D. Henrion and J. B. Lasserre, Convergent relaxations of polynomial matrix inequalities and static output feedback, IEEE Trans. Autom. Control, vol. 51, 2006, pp.192-202.

DOI: 10.1109/tac.2005.863494

Google Scholar

[17] J. C. Geromel, P. L. D. Peres, and S. R. Souza, Convex analysis of output feedback control problems: Robust stability and performance, IEEE Trans. Autom. Control, vol. 41, 1996, pp.997-1003.

DOI: 10.1109/9.508904

Google Scholar

[18] D. Rosinova, V. Vesely, and V. Kucera, A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems,, KYBERNETIKA, vol. 39, 2003, pp.447-459.

Google Scholar

[19] D. Huang and S. K. Nguang, Robuststatic output feedback controller of fuzzy systems: An ILMI approach, IEEE Trans. Syst., Man. Cybern. Part B, Cybern., vol. 36, 2006, pp.216-222.

DOI: 10.1109/tsmcb.2005.856145

Google Scholar

[20] U. Shaked, An LPD approach to robusandstatic output feedback design, IEEE Trans. Autom. Control, vol. 48, 2003, pp.866-872.

DOI: 10.1109/tac.2003.811270

Google Scholar

[21] E. Prempain and I. Postlethwaite, Static output feedback stabilization withperformance for a class of plants, Syst. Control Lett., vol. 43, 2001, pp.159-166.

DOI: 10.1016/s0167-6911(01)00087-1

Google Scholar

[22] G. I. Bara and M. Boutayeb, Static output feedback stabilization withperformance for linear discrete-time systems, IEEE Trans. Autom. Control, vol. 50, 2005, pp.250-254.

DOI: 10.1109/tac.2004.841922

Google Scholar

[23] D. Peaucelle and D. Arzelier, Ellipsoidal sets for resilient and robust static output-feedback, IEEE Trans. Autom. Control, vol. 50, 2005, pp.899-904.

DOI: 10.1109/tac.2005.849256

Google Scholar