[1]
Yunkui Xiao. Automotive Fault Diagnosis, Beijing: Beijing Institute of Technology Press, (2006).
Google Scholar
[2]
D M Tullsen, S J Eggers, H M Levy, et al. Simultaneous multithreading: Maximizing on-chip parallelism[C]. In: Proc of the 22nd Annual Int'l Symposium on Computer Architecture. Los Alamitos, CA: IEEE Computer Society Press, 1995. 392-403.
DOI: 10.1109/isca.1995.524578
Google Scholar
[3]
Longhan Cao. Diesel intelligent fault diagnosis, Beijing: National Defense Industry Press, Beijing: (2005).
Google Scholar
[4]
Longhan Cao, Changxiu Cao, Yikai Sun. Status and Prospects of Diesel Engine Fault Diagnosis Technology [J]. Chongqing University, 2001. 24(6): 134-138.
Google Scholar
[5]
C. Cortes & V. Vapnik. Support-vector networks, Machine Learning. v. 20, 1995: 273-297.
DOI: 10.1007/bf00994018
Google Scholar
[6]
Han J, Pei J, Yin Y. Mining Frequent patterns without candidate generation. ACM SIGMOD International Conference Management of Data. Dallas, 2000. 1-12.
DOI: 10.1145/342009.335372
Google Scholar
[7]
V. Vapnik, LevinE, LeCunY. Measuring the VC-dimension of A Learning Machine. Nueral Compution, 1994, 6: 851-876.
Google Scholar
[8]
Vapnik V.N. The nature of statistical learning theory. New ork: Springer-Verlag, (2000).
Google Scholar
[9]
Steve R Gunn. Support vector machines for clsssification and regression[R]. England: University of Southampton, (1998).
Google Scholar
[10]
C. Cortes & V. Vapnik. Support-vector networks, Machine Learning. v. 20, 1995: 273-297.
DOI: 10.1007/bf00994018
Google Scholar
[11]
Vapnik, V. N. An overview of statistical learning theory. IEEE Trans. Neural Networks, 10, 1999: 988-999.
DOI: 10.1109/72.788640
Google Scholar