Thermal Modeling of Randomly Distributed Multi-Walled Carbon Nanotube/Polymer Composites

Article Preview

Abstract:

A three-dimensional computational model based on the finite element method was developed to predict the thermal properties of randomly distributed multi-walled carbon nanotube (MWCNT)/polymer composites. The numerical results agree very well with the experimental data for MWCNT/epoxy composites with the MWCNT loading below ~10 vol% at the interfacial thermal resistance of ~1.0×10-8 m2K/W, which may give insight into the relationship between the thermal behavior of MWCNT-matrix interfaces and the thermal conductivity of composites. This model is also a useful tool to evaluate the effects of MWCNT-matrix interfacial thermal resistance, volume fraction, thermal conductivity and diameter of MWCNTs on the thermal conductivity of other types of MWCNT/ polymer composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-127

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. H. Gao, T. Cagin and W. A. Goddard: Nanotechnology Vol. 9 (1998), p.184.

Google Scholar

[2] S. Berber, Y. K. Kwon and D. Tomanek: Phys Rev Lett Vol. 84 (2000), p.4613.

Google Scholar

[3] J. Hone, M. Whitney, C. Piskoti, A. Zettl: Phys Rev B Vol. 59 (1999), R2514.

DOI: 10.1103/physrevb.59.r2514

Google Scholar

[4] J. Hong, J. Lee, C. K. Hong and S. E. Shim: Curr Appl Phys Vol. 10 (2010), p.359.

Google Scholar

[5] S. R. Wang, R. Liang, B. Wang and C. Zhang: Carbon Vol. 47 (2009), p.53.

Google Scholar

[6] C. Guthy, F. Du, S. Brand, K. I. Winey, J. E. Fischer: J Heat Trans-T Asme Vol. 129(2007), p.1096.

Google Scholar

[7] R. Haggenmueller, C Guthy, J. R. Lukes, J. E. Fischer, K. I. Winey: Macromolecules Vol. 40(2007), p.2417.

DOI: 10.1021/ma0615046

Google Scholar

[8] S. Ju and Z. Y. Li: Phys Lett A Vol. 353 (2006), p.194.

Google Scholar

[9] C. W. Nan, G. Liu, Y. H. Lin and M. Li: Appl Phys Lett Vol 85 (2004), p.3549.

Google Scholar

[10] L. Gao, X. F. Zhou, Y. L. Ding: Chem Phys Lett Vol. 434(2007), p.297.

Google Scholar

[11] I. V. Singh, M. Tanaka and M. Endo: Int J Therm Sci Vol. 46 (2007), p.842.

Google Scholar

[12] Y. S. Song and J. R. Youn: Carbon Vol. 44 (2006), p.710.

Google Scholar

[13] H. M. Duong, D. V. Papavassiliou, K. J. Mullen and S. Maruyama: Nanotechnology Vol. 19 (2008), 065702.

Google Scholar

[14] J. M. Zhang, M. Tanaka: Eng Anal Bound Elem Vol. 31(2007), p.388.

Google Scholar

[15] X. Li, X. Fan, Y. Zhu, J. Li, J. M. Adams, S. Shen, H. Li: submitted to Computational materials science (2012).

Google Scholar

[16] R. S. Prasher, X. J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri and P. Keblinski: Phys Rev Lett Vol. 102 (2009), 105901.

DOI: 10.1103/physrevlett.102.105901

Google Scholar

[17] N. Shenogina, S. Shenogin, L. Xue and P. Keblinski: Appl Phys Lett Vol. 87 (2005), 133106.

DOI: 10.1063/1.2056591

Google Scholar

[18] H. L. Zhong and J. R. Lukes: Phys Rev B Vol. 74 (2006), 125403.

Google Scholar

[19] K. Bui, B. P. Grady and D. V. Papavassiliou: Chem Phys Lett Vol. 508 (2011), p.248.

Google Scholar

[20] Q. Z. Xue: Nanotechnology Vol. 17 (2006), p.1655.

Google Scholar

[21] M. B. Bryning, D. E. Milkie, M. F. Islam, J. M. Kikkawa and A. G. Yodh: Appl Phys Lett Vol. 87 (2005), 161909.

DOI: 10.1063/1.2103398

Google Scholar