XPS Characterization of Porphyrin Based Self-Assembled Monolayers on Gold

Article Preview

Abstract:

XPS characterization of self-assembled monolayers (SAMs) of tetraphenylporphyrin bearing a rigid tripodal linker by chemisorption of the thiol-derivatized terminal groups on gold substrate is described. The surface structure of the SAMs bearing tripodal linker were analyzed by X-ray photoelectron spectroscopy (XPS), and electrochemical cyclic voltammetry (CV) measurements. XPS confirms the formation of porphyrin SAMs on Au surface and identified bonding configurations of porphyrin molecules in the chemisorption of SAMs. The film thickness values (36 Å) obtained by XPS agree well with the estimated value by assuming the vertical orientation of the molecules on the gold surface. Using the Au4f7/2 as an internal standard, a lower binding energies shift (1.8 eV) of S2p in the SAMs reveals that the porphyrins were chemisorbed onto the surface via sulfurgold bonds. Electrochemical CV measurements suggest near monolayer coverage of the tripodal porphyrins with good stability of the redox SAMs, which have promising application in the development of molecular based electronic device and memory architectures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

234-238

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Kumar, N.L. Abbott, E. Kim, H.A. Biebuyck and G.M. Whitesides, Acc. Chem. Res. Vol. 28 (1995), p.219.

Google Scholar

[2] M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin and J.M. Tour, Science Vol. 278 (1997), p.252.

Google Scholar

[3] F. Schreiber, Prog. Surf. Sci. Vol. 65 (2000), p.151.

Google Scholar

[4] M. Yoneyama, A. Fujii, S. Maeda and T. Murayama, Appl. Phys. Lett. Vol. 58 (1991), p.2381.

Google Scholar

[5] Z. Liu, A.A. Yasseri, J.S. Lindsey and D.F. Bocian, Science Vol. 302 (2003), p.1543.

Google Scholar

[6] D.T. Gryko, C. Clausen and J.S. Lindsey, J. Org. Chem. Vol. 64 (1999), p.8635.

Google Scholar

[7] E. Galoppini, W. Guo, P. Qu and G. Meyer, J. Am. Chem. Soc. Vol. 123 (2001), p.4342.

Google Scholar

[8] J.K. Whitesell and H.K. Chang, Science Vol. 261 (1993), p.73.

Google Scholar

[9] J. Zak, H.P. Yuan, M. Ho, L.K. Woo and M.D. Porter, Langmuir Vol. 9 (1993), p.2772.

Google Scholar

[10] T.A. Postlehwaite, J.E. Hutchison, K.W. Hathcock and R.W. Murray, Langmuir Vol. 11 (1995), p.4109.

Google Scholar

[11] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, in: Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Prairie (1978).

Google Scholar

[12] D.M. Sarno, L.J. Matienzo and Jr.W.E. Jones, Inorg. Chem. Vol. 40 (2001), p.6308.

Google Scholar

[13] M. Nappa and J.S. Valentine, J. Am. Chem. Soc. Vol. 100 (1978), p.5075.

Google Scholar

[14] R.G. Nuzzo, B.R. Zegarski and L.H. Dubois, J. Am. Chem. Soc. Vol. 109 (1987), p.733.

Google Scholar

[15] C.D. Bain, H.A. Biebuck and G.M. Whitesides, Langmuir Vol. 5 (1989), p.723.

Google Scholar

[16] P.E. Laibinis and G.M. Whiteside, J. Am. Chem. Soc. Vol. 114 (1992), p. (1990).

Google Scholar

[17] S. Tanuma, C.J. Powell and D.R. Penn, Surf. Interface Anal. Vol. 21 (1993), p.165.

Google Scholar

[18] M.S. Boeckl, A.L. Bramblett, K.D. Hauch, T. Sasaki, B.D. Ratner and J.W. Jr. Rogers, Langmuir Vol. 16 (2000), p.5644.

DOI: 10.1021/la991513q

Google Scholar

[19] K.M. Roth, J.S. Lindsey, D.F. Bocian and W.G. Kuhr, Langmuir Vol. 18 (2002), p.4030.

Google Scholar

[20] Z.J. Zhang, A.L. Verma, M. Yoneyama, K. Nakashima, K. Iriyama and Y. Ozaki, Langmuir Vol. 13 (1997), p.4422.

Google Scholar

[21] C.A. Widrig, C. Chung and M.D. Porter, J. Electroanal. Chem. Vol. 310 (1991), p.335.

Google Scholar