Enhanced Hardness Property in the Development of Al-TiC Composites through P/M Techniques

Article Preview

Abstract:

Powder Metallurgy is a continually and rapidly evolving technology, embracing most metallic and alloy materials with a variety of shapes. Weight percent of reinforcements and processing parameters plays a vital role in determining strength of the powder metallurgical parts. In this work, the effect of varying weight percent of particulate TiC reinforcement with elemental 6061 Aluminium alloy on mechanical properties of specimens processed through powder metallurgy has been investigated. Weight percent of TiC ranges from 1% to 10% and the specimens are compacted at 125 MPa and 175 MPa. With increase in the weight percent of TiC up to 5%, micro hardness and tensile strength value increases and there is a decrease in tensile strength value for a weight percent of 10 % TiC. Increase in compaction pressure from 125 MPa to 175 MPa, the density, hardness and tensile strength value increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-249

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Surappa M K: Aluminium matrix composites: Challenges and opportunities, Sadhana Vol. 28, parts1&2, p.319 – 334(2003).

DOI: 10.1007/bf02717141

Google Scholar

[2] Miyajima T, Iwai Y: Effects of reinforcements on sliding wear behavior of aluminum matrix composites. J Wear 2003; 255: 606–16.

DOI: 10.1016/s0043-1648(03)00066-8

Google Scholar

[3] DaCosta CE, Zapata WC, Velasco F, Ruiz-Prieto JM, Torralba JM. Wear behavior of aluminium reinforced with nickel aluminide MMCs. J Mater Process Technol 1999; 92–93: 66–70.

DOI: 10.1016/s0924-0136(99)00213-7

Google Scholar

[4] Zhang Z, Chen DL: Contribution of Orowan strengthening effect in particulate – reinforced metal matrix nano composites. J Mater Sci Eng A 2008; 483– 484: 148–52.

DOI: 10.1016/j.msea.2006.10.184

Google Scholar

[5] Manna I, Nandi P, Bandyopadhyay B, Ghoshray K, Ghoshray A: Microstructural and nuclear magnetic resonance studies of solid-state amorphization in Al–Ti–Si composites prepared by mechanical alloying. J Acta Mater 2004; 52: 4133–42.

DOI: 10.1016/j.actamat.2004.05.026

Google Scholar

[6] Wang Y, Rainforth WM, Jones H, Lieblich M: Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy–Ni3Al powder metallurgy composite. J Wear 2001; 251: p.1421–32.

DOI: 10.1016/s0043-1648(01)00783-9

Google Scholar

[7] Murphy AM, Clyne TW: The effect of initial porosity and particle clustering on the tensile failure of cast particulate MMCs. In: Street K, Poursartip A, editors. Proc. ICCM-10, vol. 2, 1995. pp.35-42.

Google Scholar

[8] Stefanescu DM, Dhindaw BK: Behaviour of insoluble particles at the solid/liquid interface. In: Metals handbook, vol. 15. Metals Park (OH): ASM, 1988. pp.142-47.

Google Scholar

[9] Lloyd DJ: The solidification microstructure of particulate reinforced aluminium/SiC composites. Comp Sci Tech 1989; 35: pp.59-79.

Google Scholar

[10] Lagace H, Lloyd DJ: Microstructural analysis of Al-SiC composites. Canadian Metall Q 1989; 28(2): pp.45-52.

Google Scholar

[11] Kennedy A R, Wyatt S M: The effect of processing on the mechanical properties and interfacial strength of aluminium/TiC MMCs, Composites Science and Technology 60 (2000) 307-314.

DOI: 10.1016/s0266-3538(99)00125-6

Google Scholar

[12] McKimpson MG, Scott TE: Processing and properties of metal matrix composites containing discontinuous reinforcement. Mater Sci Eng 1989; A107: pp.93-106.

DOI: 10.1016/0921-5093(89)90378-x

Google Scholar

[13] Mortensen A: A review of the fracture toughness of particle reinforced aluminum alloys. In: Masounave J, Dhingra A, editors. Fabrication of particulates reinforced metal matrix composites. OH: ASM, Metals Park, 1990. pp.217-33.

Google Scholar

[14] Whitehouse AF, Clyne TW: Critical stress criteria for interfacial cavitation in MMCs. Acta Metall Mater 1995; 43(5): 2107-2114.

DOI: 10.1016/0956-7151(94)00375-r

Google Scholar

[15] Park, B.G., Crosky, A.G., Hellier, A. K : Materials characterization and mechanical properties of Al2O3–Al metal matrix composites. J. Mater. Sci. 36, 2417–2426(2001).

Google Scholar

[16] Dobrzanski, L.A., WEodarczyk, A., Adamiak, M: The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles. J. Mater. Proc. Tech. 175, 186–191(2006).

DOI: 10.1016/j.jmatprotec.2005.04.031

Google Scholar

[17] German, R. M: Sintering Theory and Practice. Wiley, New York, (1996).

Google Scholar

[18] Shorowordi, K.M., Laoui, T., Haseeb, A.S.M.A., Celis, J.P., Froyen, L: Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites. J. Mater. Proc. Tech. 142, 738–743(2003).

DOI: 10.1016/s0924-0136(03)00815-x

Google Scholar

[19] N. Chawla and Y. -L. Shen: Mechanical behaviour of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p.357–370.

DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i

Google Scholar

[20] H.K. Lee: A Computational Approach to the Investigation of Impact Damage Evolution in Discontinuously Reinforced Fiber Composites, Comput. Mech., 2001, 27(6), p.504–512.

DOI: 10.1007/s004660100262

Google Scholar

[21] S.W. Kim, U.J. Lee, S.W. Han, D.K. Kim, and K. Ogi: Heat Treatment and Wear Characteristics of Al/SiCp Composites Fabricated by Duplex Process, Composite: Part B, 2003, 34(8), p.737–745.

DOI: 10.1016/s1359-8368(03)00081-7

Google Scholar

[22] J.M. Torralba, C.E. da Costa, and F. Velasco, P/M Aluminium Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133(1–2), p.203–206.

Google Scholar

[23] K.K. Chawla and M. Metzger: Initial Dislocation Distributions in Tungsten Fibre-Copper Composites, J. Mater. Sci., 1972, 7(1), p.34–39.

DOI: 10.1007/bf00549547

Google Scholar

[24] M. Vogelsang, R.J. Arsenault, and R.M. Fisher: An in Suit HVEM Study of Dislocation Generation at Al/SiC Interface in Metal Matrix Composites, Metall. Trans. A, 1986, 17(3), p.379–389.

DOI: 10.1007/bf02643944

Google Scholar

[25] R.J. Arsenault and N. Shi: Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81, p.175–187.

DOI: 10.1016/0025-5416(86)90261-2

Google Scholar

[26] Y.W. Yan, L. Geng, and A.B. Li: Experimental and Numerical Studies of the Effect of Particle Size on the Deformation Behavior of the Metal Matrix Composites, Mater. Sci. Eng. A, 2007, 448(1–2), p.315–325.

DOI: 10.1016/j.msea.2006.10.158

Google Scholar

[27] Amadora D, Ruiz-Navas EM, Torralba JM, Fogagnolo JB: Solid solution in Al–4. 5 wt% Cu produced by mechanical alloying. J Mater Sci Eng A 2006; 433: p.45–49.

DOI: 10.1016/j.msea.2006.07.005

Google Scholar

[28] Nemati N, Zolriasatein A, Emamy M, Khosroshahi RA: Fabrication and alloying behavior of nanostructured Al–4. 5wt%Cu alloy in solid state by mechanical alloying. The 2nd national nano materials and nano technology conference. Isfahan, Iran; May 4–5, (2010).

DOI: 10.4028/www.scientific.net/amr.545.124

Google Scholar

[29] N. Nemati, R. Khosroshahi, M. Emamyb, A Zolriasatein : Investigation of microstructure, hardness and wear properties of Al–4. 5 wt. % Cu–TiC nanocomposites produced by mechanical milling Materials and Design (2011).

DOI: 10.1016/j.matdes.2011.03.056

Google Scholar

[30] N. Chawla, J.J. Williams, and R. Saha: Mechanical Behavior and Microstructure Characterization of Sinter-Forged SiC Particle Reinforced Aluminum Matrix Composites, J. Light Met., 2002, 2(4), p.215–227.

DOI: 10.1016/s1471-5317(03)00005-1

Google Scholar

[31] Corbin, S.F., Wilsons, D. S:. The influence of particle distribution on the mechanical response of a particulate metal matrix composite. Acta Metall. Mater. 42, 1311–1318(1994).

DOI: 10.1016/0956-7151(94)90147-3

Google Scholar