[1]
Surappa M K: Aluminium matrix composites: Challenges and opportunities, Sadhana Vol. 28, parts1&2, p.319 – 334(2003).
DOI: 10.1007/bf02717141
Google Scholar
[2]
Miyajima T, Iwai Y: Effects of reinforcements on sliding wear behavior of aluminum matrix composites. J Wear 2003; 255: 606–16.
DOI: 10.1016/s0043-1648(03)00066-8
Google Scholar
[3]
DaCosta CE, Zapata WC, Velasco F, Ruiz-Prieto JM, Torralba JM. Wear behavior of aluminium reinforced with nickel aluminide MMCs. J Mater Process Technol 1999; 92–93: 66–70.
DOI: 10.1016/s0924-0136(99)00213-7
Google Scholar
[4]
Zhang Z, Chen DL: Contribution of Orowan strengthening effect in particulate – reinforced metal matrix nano composites. J Mater Sci Eng A 2008; 483– 484: 148–52.
DOI: 10.1016/j.msea.2006.10.184
Google Scholar
[5]
Manna I, Nandi P, Bandyopadhyay B, Ghoshray K, Ghoshray A: Microstructural and nuclear magnetic resonance studies of solid-state amorphization in Al–Ti–Si composites prepared by mechanical alloying. J Acta Mater 2004; 52: 4133–42.
DOI: 10.1016/j.actamat.2004.05.026
Google Scholar
[6]
Wang Y, Rainforth WM, Jones H, Lieblich M: Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy–Ni3Al powder metallurgy composite. J Wear 2001; 251: p.1421–32.
DOI: 10.1016/s0043-1648(01)00783-9
Google Scholar
[7]
Murphy AM, Clyne TW: The effect of initial porosity and particle clustering on the tensile failure of cast particulate MMCs. In: Street K, Poursartip A, editors. Proc. ICCM-10, vol. 2, 1995. pp.35-42.
Google Scholar
[8]
Stefanescu DM, Dhindaw BK: Behaviour of insoluble particles at the solid/liquid interface. In: Metals handbook, vol. 15. Metals Park (OH): ASM, 1988. pp.142-47.
Google Scholar
[9]
Lloyd DJ: The solidification microstructure of particulate reinforced aluminium/SiC composites. Comp Sci Tech 1989; 35: pp.59-79.
Google Scholar
[10]
Lagace H, Lloyd DJ: Microstructural analysis of Al-SiC composites. Canadian Metall Q 1989; 28(2): pp.45-52.
Google Scholar
[11]
Kennedy A R, Wyatt S M: The effect of processing on the mechanical properties and interfacial strength of aluminium/TiC MMCs, Composites Science and Technology 60 (2000) 307-314.
DOI: 10.1016/s0266-3538(99)00125-6
Google Scholar
[12]
McKimpson MG, Scott TE: Processing and properties of metal matrix composites containing discontinuous reinforcement. Mater Sci Eng 1989; A107: pp.93-106.
DOI: 10.1016/0921-5093(89)90378-x
Google Scholar
[13]
Mortensen A: A review of the fracture toughness of particle reinforced aluminum alloys. In: Masounave J, Dhingra A, editors. Fabrication of particulates reinforced metal matrix composites. OH: ASM, Metals Park, 1990. pp.217-33.
Google Scholar
[14]
Whitehouse AF, Clyne TW: Critical stress criteria for interfacial cavitation in MMCs. Acta Metall Mater 1995; 43(5): 2107-2114.
DOI: 10.1016/0956-7151(94)00375-r
Google Scholar
[15]
Park, B.G., Crosky, A.G., Hellier, A. K : Materials characterization and mechanical properties of Al2O3–Al metal matrix composites. J. Mater. Sci. 36, 2417–2426(2001).
Google Scholar
[16]
Dobrzanski, L.A., WEodarczyk, A., Adamiak, M: The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles. J. Mater. Proc. Tech. 175, 186–191(2006).
DOI: 10.1016/j.jmatprotec.2005.04.031
Google Scholar
[17]
German, R. M: Sintering Theory and Practice. Wiley, New York, (1996).
Google Scholar
[18]
Shorowordi, K.M., Laoui, T., Haseeb, A.S.M.A., Celis, J.P., Froyen, L: Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites. J. Mater. Proc. Tech. 142, 738–743(2003).
DOI: 10.1016/s0924-0136(03)00815-x
Google Scholar
[19]
N. Chawla and Y. -L. Shen: Mechanical behaviour of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p.357–370.
DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i
Google Scholar
[20]
H.K. Lee: A Computational Approach to the Investigation of Impact Damage Evolution in Discontinuously Reinforced Fiber Composites, Comput. Mech., 2001, 27(6), p.504–512.
DOI: 10.1007/s004660100262
Google Scholar
[21]
S.W. Kim, U.J. Lee, S.W. Han, D.K. Kim, and K. Ogi: Heat Treatment and Wear Characteristics of Al/SiCp Composites Fabricated by Duplex Process, Composite: Part B, 2003, 34(8), p.737–745.
DOI: 10.1016/s1359-8368(03)00081-7
Google Scholar
[22]
J.M. Torralba, C.E. da Costa, and F. Velasco, P/M Aluminium Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133(1–2), p.203–206.
Google Scholar
[23]
K.K. Chawla and M. Metzger: Initial Dislocation Distributions in Tungsten Fibre-Copper Composites, J. Mater. Sci., 1972, 7(1), p.34–39.
DOI: 10.1007/bf00549547
Google Scholar
[24]
M. Vogelsang, R.J. Arsenault, and R.M. Fisher: An in Suit HVEM Study of Dislocation Generation at Al/SiC Interface in Metal Matrix Composites, Metall. Trans. A, 1986, 17(3), p.379–389.
DOI: 10.1007/bf02643944
Google Scholar
[25]
R.J. Arsenault and N. Shi: Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81, p.175–187.
DOI: 10.1016/0025-5416(86)90261-2
Google Scholar
[26]
Y.W. Yan, L. Geng, and A.B. Li: Experimental and Numerical Studies of the Effect of Particle Size on the Deformation Behavior of the Metal Matrix Composites, Mater. Sci. Eng. A, 2007, 448(1–2), p.315–325.
DOI: 10.1016/j.msea.2006.10.158
Google Scholar
[27]
Amadora D, Ruiz-Navas EM, Torralba JM, Fogagnolo JB: Solid solution in Al–4. 5 wt% Cu produced by mechanical alloying. J Mater Sci Eng A 2006; 433: p.45–49.
DOI: 10.1016/j.msea.2006.07.005
Google Scholar
[28]
Nemati N, Zolriasatein A, Emamy M, Khosroshahi RA: Fabrication and alloying behavior of nanostructured Al–4. 5wt%Cu alloy in solid state by mechanical alloying. The 2nd national nano materials and nano technology conference. Isfahan, Iran; May 4–5, (2010).
DOI: 10.4028/www.scientific.net/amr.545.124
Google Scholar
[29]
N. Nemati, R. Khosroshahi, M. Emamyb, A Zolriasatein : Investigation of microstructure, hardness and wear properties of Al–4. 5 wt. % Cu–TiC nanocomposites produced by mechanical milling Materials and Design (2011).
DOI: 10.1016/j.matdes.2011.03.056
Google Scholar
[30]
N. Chawla, J.J. Williams, and R. Saha: Mechanical Behavior and Microstructure Characterization of Sinter-Forged SiC Particle Reinforced Aluminum Matrix Composites, J. Light Met., 2002, 2(4), p.215–227.
DOI: 10.1016/s1471-5317(03)00005-1
Google Scholar
[31]
Corbin, S.F., Wilsons, D. S:. The influence of particle distribution on the mechanical response of a particulate metal matrix composite. Acta Metall. Mater. 42, 1311–1318(1994).
DOI: 10.1016/0956-7151(94)90147-3
Google Scholar