Polymorphic Changes of Calcite Carbonate Sediment in Aqueous Solution

Article Preview

Abstract:

Calcium carbonate (CaCO3) is abundant in nature, and is also an important material applied in industry as pigment, filler material, etc. It is a challenge to control the desired CaCO3 properties for industry applications. In this study, three typical morphologies of CaCO3, calcite, aragonite and vaterite were prepared. The crystallization temperature and addition of acrylic-acrylate-sulfosalt copolymer play a significant effect on the polymorph change of CaCO3 sediment. Higher temperature promoted the formation of aragonite, while more additives tended to form the vaterite. The x-ray diffraction and scanning electron microscope analysis confirmed the formation of CaCO3 with various polymorphs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.Y. Tai, F. B. Chen, Polymorphism of CaCO3, precipitated in a constant-composition environment, AIChE J. Vol. 44 (1998), pp.1790-1798.

DOI: 10.1002/aic.690440810

Google Scholar

[2] B. Cheng, M. Lei, J. Yu, X. Zhao, Preparation of monodispersed cubic calcium carbonate particle particles via precipitation reaction, Mater. Lett. Vol. 58 (2004) , pp.1565-1570.

DOI: 10.1016/j.matlet.2003.10.027

Google Scholar

[3] A. Sugawara, T. Kato, Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices, Chem. Commun. Vol. 6 (2000) , pp.487-488.

DOI: 10.1039/a909566g

Google Scholar

[4] S.I. Stupp, P.V. Braun, Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors, Science. Vol. 277 (1997) , pp.1242-1248.

DOI: 10.1126/science.277.5330.1242

Google Scholar

[5] J. Peric,M. Vucak,R. Krstulovic,L. Brecevic, D. Kralj, Phase transformation of calcium carbonate polymorphs, Thermochim. Acta. Vol. 277 (1996) , pp.175-186.

DOI: 10.1016/0040-6031(95)02748-3

Google Scholar

[6] D. Kralj,L. Brecevic, J. Kontrec, Vaterite growth and dissolution in aqueous solution Ⅲ. Kinetics of transformation,J. Cryst. Growth. Vol. 177 (1997) , pp.248-257.

DOI: 10.1016/s0022-0248(96)01128-1

Google Scholar

[7] N. Spanos P.G. Koutsoukos, The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase, J. Cryst. Growth. Vol. 191 (1998) , pp.783-790.

DOI: 10.1016/s0022-0248(98)00385-6

Google Scholar

[8] A. Katsifaras, N. Spanos, Effect of inorganic phosphate ions on the spotaneous precipitation of vaterite and on the transformation of vaterite to calcite, J. Cryst. Growth. Vol. 204 (1999), p.183.

DOI: 10.1016/s0022-0248(99)00174-8

Google Scholar

[9] F. Manoli,E. Dalas, Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol, J. Cryst. Growth. Vol. 218 (2000) , pp.359-364.

DOI: 10.1016/s0022-0248(00)00560-1

Google Scholar

[10] J. Kawano, N. Shimobayashi, M. Kitamura, K. Shinoda, N. Aikawa, Formation process of calcium carbonate from highly supersaturated solution, J. Cryst. Growth. Vol. 237-239 (2002) , pp.419-423.

DOI: 10.1016/s0022-0248(01)01866-8

Google Scholar

[11] D. Zhao, Y. Zhu, F. Li, Q. Ruan, S. Zhang, L. Zhang,F. Xu, Polymorph selection and nanocrystallite rearrangement of calcium carbonate in carboxymethyl chitosan aqueous solution: Thermodynamic and kinetic analysis, Mater. Res. Bull. Vol. 45 (2010).

DOI: 10.1016/j.materresbull.2009.08.015

Google Scholar

[12] H. Wei, Q. Shen, Y. Zhao, D. J. Wang, D. F. Xu, Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite, J. Cryst. Growth, Vol. 250 (2003) , pp.516-524.

DOI: 10.1016/s0022-0248(02)02484-3

Google Scholar

[13] L. Wang, I. Sondi, E. Matijevi, Preparation of uniform needle-like aragonite particles by homogeneous precipitation, J. Colloid Interface Sci. Vol. 218 (1999) , pp.545-553.

DOI: 10.1006/jcis.1999.6463

Google Scholar

[14] S. D. Škapin, I. Sondi, Synthesis and characterization of calcite and aragonite in polyol liquids: Control over structure and morphology,J. Colloid. Interface Sci. Vol. 347 (2010) , pp.221-226.

DOI: 10.1016/j.jcis.2010.03.070

Google Scholar

[15] A.W. Xu,M. Antonietti,H. Cölfen, Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization, Adv. Funct. Mater. Vol. 16 (2006) , pp.903-908.

DOI: 10.1002/adfm.200500716

Google Scholar

[16] D. J. Kinsman, H. D. Holland, The co-precipitation of cations with CaCO3-IV. The co-precipitation of Sr2+ with aragonite between 16° Cand 96° C, Geochim. Cosmochim. Acta. Vol. 33 (1969), p.1.

DOI: 10.1016/0016-7037(69)90089-1

Google Scholar

[17] F. C. Meldrum, H. Cölfen, Controlling mineral morphologies and structures in biological and synthetic system. Chem. Rev. Vol. 108 (2008), p.4332–4432.

DOI: 10.1021/cr8002856

Google Scholar

[18] J. Kawano, N. Shimobayashi, A. Miyake, M. Kitamura, Precipitation diagram of calcium carbonate polymorphs: its construction and significance, J. Phys.: Condens. Matter. Vol. 21(2009), p.5102.

DOI: 10.1088/0953-8984/21/42/425102

Google Scholar

[19] J.G. Yu, M. Lei, B. Cheng, Facile preparation of monodispersed calcium carbonate spherical particles via a simple precipitation reaction, Mater. Chem. Phys. Vol. 88 (2004), pp.1-4.

DOI: 10.1016/j.matchemphys.2004.06.013

Google Scholar

[20] J.M. Ouyang, X.Q. Yao, Z.X. Su, F.Z. Cui, Simulation of calcium oxalate stone in vitro, Sci. China, Ser. B. Vol. 46 (2003), pp.234-242.

DOI: 10.1360/02yb0033

Google Scholar

[21] A. Dey, G. de With, N. Sommerdijk, In situ techniques in biomimetic mineralization studies of calcium carbonate, Chem. Soc. Rev. Vol. 39 (2010), pp.397-409.

DOI: 10.1039/b811842f

Google Scholar