Effect of Reaction between Fe and Carbide Particles on Mechanical Properties of Fe-Base Composite

Article Preview

Abstract:

Sintered Fe-5 wt. % carbide (SiC or TiC) composites have been prepared via a powder metallurgy (P/M) route. Two carbide particle sizes, < 20 µm and 20-32 µm, were mixed with Fe powder. The powder mixtures were compacted and sintered at 3 different temperatures, 1100, 1150 and 1200 °C. Microstructures of sintered Fe-5 wt. % SiC composites showed evidence of SiC decomposition. The decomposed Si and C atoms diffused into Fe particles resulting in formation of solid solution of Si and C in Fe during sintering. During cooling, the solid solution of C in Fe decomposed to pearlite structure (ferrite and cementite (Fe3C) lamellar structure). Microstructures of sintered Fe-5 wt. % TiC composites showed no evidence of TiC decomposition at the investigated sintering temperatures. Because of the reaction between SiC and Fe, tensile strength and hardness of the sintered Fe-SiC composites were higher than those of the sintered Fe. Experimental results showed that strength and hardness of the sintered Fe-SiC composites increased with increasing sintering temperature and with decreasing SiC particle size. In contrast, mechanical properties of the sintered Fe-TiC composites were inferior to those of the sintered Fe. The reason of poor mechanical properties may be attributed to poor bonding between Fe and TiC particles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 55-57)

Pages:

357-360

Citation:

Online since:

August 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: