Copper Powder Extrusion: A Smart Processing for Energy and Environment Conservation

Abstract:

Article Preview

Cu powder extrusion developed in this work is aimed to be a pilot processing technique to plausibly replace conventional metal extrusion, which is higher in energy consumption and hence causes negative environment impact. In this study, both spherical- and irregular-shape Cu powders were used. 5 different binder formulae comprising low density polyethylene (LDPE); paraffin wax; and stearic acid of 25:70:5, 30:65:5, 35:60:5, 40:55:5 and 45:50:5 by weight were studied. Wettability between the binders and Cu powder of all formulae observed by naked eye appeared to be satisfactory. The binders were then mixed with 60% by volume of Cu powder. Rheological properties, observed using a capillary rheometer with 2 mm diameter orifice at 95°C, determined that the last 2 formulae gave sufficient green strength in the extrudate. However, only the latter binder formula gave extrudate with smooth surface. Downward extrusion with 45 cm distance from the die gave straight extrudates and no any distortion or warpage was found. Solvent debinding conditions using hexane at 40, 50 and 60°C were studied. The debinding at 50°C was the most effective in dissolving the binder and ensured that the Cu powder remained intact. The 15 cm-long Cu extrudates were sintered in H2 atmosphere at 1030°C for different times. Density and tensile strength of the sintered extrudates were determined.

Info:

Periodical:

Advanced Materials Research (Volumes 55-57)

Main Theme:

Edited by:

Tawee Tunkasiri

Pages:

361-364

DOI:

10.4028/www.scientific.net/AMR.55-57.361

Citation:

R. Wichianrak et al., "Copper Powder Extrusion: A Smart Processing for Energy and Environment Conservation", Advanced Materials Research, Vols. 55-57, pp. 361-364, 2008

Online since:

August 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.