Toxicity Mechanism of Formic Acid is Directly Linked to ROS Burst and Oxidative Damage in Yeast Saccharomyces cerevisiae

Article Preview

Abstract:

In this paper the survival rate of Saccharomyces cerevisiae cells after the formic acid treatment of different concentration was determined firstly, and cells of Saccharomyces cerevisiae were labeled with fluorescent probes of reactive oxygen species (ROS) and treated with formic acid, then intracellular reactive oxygen species was detected with confocal microscopy and flow cytometer. The results show that formic acid can lead to the rapid burst of intracellular reactive oxygen species. We speculated that the outbreak of the formic acid-induced reactive oxygen species and corresponding oxidative damage is the leading cause of the yeast cells death.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

1060-1065

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] McMartin, K. E., J. J. Ambre, et al. (1980). "Methanol poisoning in human subjects. Role for formic acid accumulation in the metabolic acidosis." Am J Med 68(3): 414-8.

DOI: 10.1016/0002-9343(80)90137-0

Google Scholar

[2] Nicholls, P. (1975). "Formate as an inhibitor of cytochrome c oxidase." Biochem Biophys Res Commun 67(2): 610-6.

Google Scholar

[3] Liesivuori, J. and H. Savolainen (1991). "Methanol and formic acid toxicity: biochemical mechanisms." Pharmacol Toxicol 69(3): 157-63.

DOI: 10.1111/j.1600-0773.1991.tb01290.x

Google Scholar

[4] Chang, K. T. and G. Palmer (1996). "Formate bound to cytochrome oxidase can be removed by cyanide and by reduction." Biochim Biophys Acta 1277(3): 237-42.

DOI: 10.1016/s0005-2728(96)00105-3

Google Scholar

[5] Haritos, V. S. and G. Dojchinov (2003). "Cytochrome c oxidase inhibition in the rice weevil Sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates." Comp Biochem Physiol C Toxicol Pharmacol 136(2): 135-43.

DOI: 10.1016/s1532-0456(03)00173-x

Google Scholar

[6] Dikalova, A. E., Kadiiska, M. B., and Mason, R. P. (2001). An in vivo ESR spin-trapping study: free radical generation in rats from formate intoxication--role of the Fenton reaction. Proc Natl Acad Sci U S A 98, 13549-13553.

DOI: 10.1073/pnas.251091098

Google Scholar

[7] Wallace, K. B., Eells, J. T., Madeira, V. M., Cortopassi, G., and Jones, D. P. (1997). Mitochondria-mediated cell injury. Symposium overview. Fundam Appl Toxicol 38, 23-37.

DOI: 10.1093/toxsci/38.1.23

Google Scholar

[8] Watabe, M., and Nakaki, T. (2007). ATP depletion does not account for apoptosis induced by inhibition of mitochondrial electron transport chain in human dopaminergic cells. Neuropharmacology 52, 536-541.

DOI: 10.1016/j.neuropharm.2006.07.037

Google Scholar

[9] Treichel, J. L., Henry, M. M., Skumatz, C. M., Eells, J. T., and Burke, J. M. (2003). Formate, the toxic metabolite of methanol, in cultured ocular cells. Neurotoxicology 24, 825-834.

DOI: 10.1016/s0161-813x(03)00059-7

Google Scholar

[10] Hantson, P. E. (2005). Acute methanol intoxication: physiopathology, prognosis and treatment. Bull Mem Acad R Med Belg 160, 294-300.

Google Scholar

[11] Ruiz-Laguna, J., M. J. Prieto-Alamo, et al. (2000). "Oxidative mutagenesis in Escherichia coli strains lacking ROS-scavenging enzymes and/or 8-oxoguanine defenses." Environ Mol Mutagen 35(1): 22-30.

DOI: 10.1002/(sici)1098-2280(2000)35:1<22::aid-em4>3.0.co;2-x

Google Scholar

[12] Tompkins, A. J., L. S. Burwell, et al. (2006). "Mitochondrial dysfunction in cardiac ischemia-reperfusion injury: ROS from complex I, without inhibition." Biochim Biophys Acta 1762(2): 223-31.

DOI: 10.1016/j.bbadis.2005.10.001

Google Scholar