Preparation of Nano-Porous Zn and Nanowire-Like ZnO by Anodization and Oxidation

Article Preview

Abstract:

Anodization of Zn foil in a salicylic acid-ethanol-H2O electrolyte and the following annealing of the anodized product have been investigated in this paper. Nano-porous metallic Zn were fabricated by anodization, and the Zn nano-pores formation mechanism on the zinc foil was suggested. The diameter of the Zn nano-pores is around 200 nm. Both the electrolyte concentration and potential have significant effect on the morphology and structure of the pores, and the nano-pores formation rate. Nanowire-like ZnO was produced by annealing the nano-porous metallic Zn obtained by anodization. The lengths of the ZnO nanowires range from 2 to 5 μm, and the diameters are in the range of 40~70 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

1985-1990

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Masuda, K. Fukuda, Science 268 (1995) 1466.

Google Scholar

[2] M. Steinhart, J.H. Wendorff, A. Greiner, R.B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gösele, Science 296 (2002) 1997.

DOI: 10.1126/science.1071210

Google Scholar

[3] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Ancouturier, Surf. Interface Anal. 27 (1999) 629.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[4] O. Jessensky, F. Müller, U. Gösele, Appl. Phys. Lett. 72 (1998) 1173.

Google Scholar

[5] W.J. Lee, W.H. Smyrl, Current. Appl. Phys. 8 (2008) 818.

Google Scholar

[6] J. Choi, J.H. Lim, S.C. Lee, J.H. Chang, K.J. Kim, M.A. Cho, Electrochim. Acta 51 (2006) 5502.

Google Scholar

[7] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292 (2001) 1897.

DOI: 10.1126/science.1060367

Google Scholar

[8] X.D. Bai, E.G. Wang, P.X. Gao, Z.L. Wang, Nano Lett. 3 (2003) 1147.

Google Scholar

[9] B. Pal, M. Sharon, Mater. Chem. Phys. 76 (2002) 82.

Google Scholar

[10] X.H. Han, G.Z. Wang, J.S. Jie, W.C.H. Choy, Y. Luo, T.I. Yuk, J.G. Hou , J. Phys. Chem. B 109 (2005) 2733.

Google Scholar

[11] G.S. Huang, X.L..Wu, Y.C. Cheng, J.C. Shen, A.P. Huang, P.K. Chu,, Appl. Phys. A 86(2007)463.

Google Scholar

[12] C.Y. Kuan , J.M. Chou , I.C. Leu, M.H. Hon, Electrochem. Commun. 9 (2007) 2093.

Google Scholar

[13] S.J. Kim, J. Choi, Electrochem. Commun. 10 (2008) 175.

Google Scholar

[14] S.J. Kim, J. Lee, J. Choi, Electrochim. Acta 53 (2008) 7941.

Google Scholar

[15] Y. Li, G.W. Meng, L.D. Zhang, Appl. Phys. Lett. 76 (2000) 2011.

Google Scholar

[16] C.L. Cheng, J.S. Lin, Y.F. Chen, J. Alloys Compd. 476 (2009) 903.

Google Scholar