[1]
J.X. Liu, C. Wang, J.Y. Shi, H. Liu, Y.X. Tong. Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: Acceleration by organic matters. Journal of Hazardous Materials, 2009, 163, 370–375.
DOI: 10.1016/j.jhazmat.2008.06.101
Google Scholar
[2]
P.A. Kumar, M. Ray, S. Chakraborty. Adsorption behaviour of trivalent chromium on amine-based polymer aniline formaldehyde condensate. Chemical Engineering Journal, 2009, 149(1–3), 340-347.
DOI: 10.1016/j.cej.2008.11.030
Google Scholar
[3]
I. Tadesse, S.A. Isoaho, F.B. Green, J.A. Puhakka P. Religa, A. Kowalik, P. Gierycz. Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresource Technology, 2006, 97(4), 529-534.
DOI: 10.1016/j.biortech.2005.04.028
Google Scholar
[4]
P. Religa, A. Kowalik, P. Gierycz. Application of nanofiltration for chromium concentration in the tannery wastewater. Journal of Hazardous Materials, 2011, 186(1), 288-292.
DOI: 10.1016/j.jhazmat.2010.10.112
Google Scholar
[5]
F. Akbal, S. Camcı. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination, 2011, 269(1–3), 214-222.
DOI: 10.1016/j.desal.2010.11.001
Google Scholar
[6]
F.L. Fu, L.P. Xie, B. Tang, Q. Wang, S.X. Jiang. Application of a novel strategy—advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chemical Engineering Journal, 2012, 189– 190, 283– 287.
DOI: 10.1016/j.cej.2012.02.073
Google Scholar
[7]
F.L. Fu, Q. Wang, B. Tang, Effective degradation of C.I. Acid Red 73 by advanced Fenton process, J. Hazard. Mater. 174 (2010) 17–22.
Google Scholar
[8]
American Public Health Association, Standard Method for the Examination of Water and Wastewater, 5520 Chemical Oxygen Demand, 1995, pp.5-12–5-16.
Google Scholar