Recovering Nano-Sized SnO2 from Electronic Wastes by Ultrasonic-Assisted Electrochemical Method

Article Preview

Abstract:

Tin dioxide nanoparticles were directly one-step recovered from electronic wastes using ultrasonic-assisted electrochemical method. The products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), which indicated that the average size of tetragonal SnO2 is 100 nm. The experiment parameters, such as the concentration of electrolyte, electrolysis current, reaction time and electrode distance, were also discussed. The proposed method is high energy efficient, non-toxic and environment-friendly, and suitable for the recovering of electronic wastes under the controllable reaction condition at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

2024-2028

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.V. Marikutsa, M.N. Rumyantseva and L.V. Yashina: J. Solid State Chem. Vol. 183 (2010), p.2389

Google Scholar

[2] C. F. Zhang, M. Quince and Z. X. Chen: J. Solid State Electrochem. Vol. 15 (2011), p.2645

Google Scholar

[3] M. H. Kim and Y. U. Kwon: J. Phys. Chem. C. Vol. 115 (2011), p.23120

Google Scholar

[4] Y. S. Cho, G.R. Yi and J.J. Hong: Thin Solid Films. Vol. 515 (2006), p.1864

Google Scholar

[5] P. G. Harrison, C. Bailey, N. Bowering: Chem. Mater. Vol. 15 (2003), p.979

Google Scholar

[6] Y. H. Zhou, W. B. Wu and K. Q. Qiu: Waste Management. Vol. 30 (2010), p.2299

Google Scholar

[7] J. Li, Z. Xu and Y. Zhou: Journal of Electrostatics. Vol. 65 (2007), p.233

Google Scholar

[8] J.T. Li, Y. Yin, L. Li and M.X. Sun: Ultrason. Sonochem. Vol. 17 (2010), p.11

Google Scholar

[9] K. S. Suslick: Science Vol. 247 (1990), p.1439

Google Scholar

[10] J. Klima: Ultrasonics. Vol. 51 (2011), p.202

Google Scholar

[11] S. Wu, A. Z. Sun and F. Q. Zhai: Materials Letters. Vol. 65 (2011), p.1882

Google Scholar

[12] F. D. Menezes, A. Galembeck and S. A. Junior: Ultrason. Sonochem. Vol. 18 (2011), p.1008

Google Scholar

[13] L. A. Patil, M. D. Shinde, A. R. Bari and V. V. Deo: Materials Science and Engineering B. Vol. 176 (2011), p.579

Google Scholar

[14] K. Jandee, P.E. Jong and M. Toshiyuki: Electrochimica Acta. Vol. 54 (2009), p.3412

Google Scholar

[15] P. Rai, J. N. Jo, I. H. Lee and Y. T. Yu: J Mater Sci: Mater Electron. Vol. 22 (2011), p.1053

Google Scholar

[16] M. Bhagwat, P. Shah and V. Ramaswamy: Materials Letters Vol. 57 (2003), p.1604

Google Scholar