[1]
A.V Bridgwater, D. Meier and D. Radlein. An overview of fast pyrolysis of biomass. J. Organic Geochem., 30: 1479-1493. DOI: 10.1016/S0146-6380(99)00120-5 (1999).
DOI: 10.1016/s0146-6380(99)00120-5
Google Scholar
[2]
J. Kawser, J. Hayashi and C.Z. Li. Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. J. Fuel, 83: 833-843. DOI: 10.1016/j.fuel.2003.09.017. (2004).
DOI: 10.1016/j.fuel.2003.09.017
Google Scholar
[3]
Herzog, H. http://sequestration.mit.edu/pdf/introduction_to_capture. pdf 2003.
Google Scholar
[4]
Herzog, H.J., Drake, E.M. Greenhouse Gas R and D Programme. IEA/93/OE6 (1993).
Google Scholar
[5]
J. David. Economic evaluation of leading technology options for sequestration of carbon dioxide. Master of science in technology and policy.: Massachusetts Institute of Technology; (2000).
Google Scholar
[6]
L. Kaluza, M.Z. Drazil. Carbon-supported Mo catalysts prepared by a new impregnation method using MaO/ water slurry : saturated loading, hydrodesulphurization activity and promotion by Co. Carbon 39, 2023-2034. (2001).
DOI: 10.1016/s0008-6223(01)00018-5
Google Scholar
[7]
Bassilakis, R.; Carangelo, R. M.; Wojtowicz, M. A. TG-FTIR Analysis of Biomass Pyrolysis. Fuel 2001, 80, 1765-1786.
DOI: 10.1016/s0016-2361(01)00061-8
Google Scholar
[8]
Mahammed M.A., Salmiaton A., Wan Azlina W.A.K Amran M.S.M., Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology 110 (2012) 628–636.
DOI: 10.1016/j.biortech.2012.01.056
Google Scholar
[9]
Khalik H.P.S., Marliana M.M Alsammari T. Material properties of epoxy-reinforced bio composites with lignin from empty fruit bunch as curing agent. Bioresouce 6 (4):5206 – 5223.
DOI: 10.15376/biores.6.4.5206-5223
Google Scholar
[10]
A.S. Baharudden, N.A Abdul Rahman, U.M. Shah Hassan, M.A. Wakisaka M. Shirai Y. 2011. Evaluation of pressed shredded empty fruit bunch (EFB)-palm oil mill effluent (POME) anaerobic sludge based compost using Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analysis. African Journal of Biotechnology, 10(41): 8082-8089.
DOI: 10.5897/ajb10.548
Google Scholar
[11]
Jordan Werbe-fuentes, Michael Moody, Oriana Korol, Tristan Kading. 2005. Carbon Dioxide Absorption in the Near Infrared. New York, USA.
Google Scholar
[12]
Dynament .2011. Miniature infrared gas sensors gold series. Application note AN4. Premier house. South Normanton. Derbyshire, DE 55 2DS UK.
Google Scholar
[13]
Keck, 2012. Fourier Transform Infrared Spectroscopy FT-IR. Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University.
Google Scholar
[14]
M.S Shafeeyan., W.M. Wan Daud, A. Houshmand, A. Arami-Niya . Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Applied Surface Science 257 (2011) 3936–3942.
DOI: 10.1016/j.apsusc.2010.11.127
Google Scholar
[15]
P.E. Fanning and M.A Vannice. 1993 A DRIFTS study of the formation of surface groups on carbon by oxidation.Carbon 32(5): 721-730 (1993).
DOI: 10.1016/0008-6223(93)90009-y
Google Scholar
[16]
W.T Tsai, M.K. Lee and Y.M. Chang. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrol., 76: 230-237. DOI: 10.1016/j.jaap.2005.11.007 (2006).
DOI: 10.1016/j.jaap.2005.11.007
Google Scholar