Production of High Calorific Biogas from Organic Wastewater and Enhancement of Anaerobic Digestion

Article Preview

Abstract:

Anaerobic digestion is a widely applied technology to produce biogas from organic wastewater. The biogas calorific value depends on the methane-content. For biogas flows >100 m3/h, the two-step process is usually used for production of high calorific biogas from organic wastewater: the first step, anaerobic digestion; the second step, biogas purification. However, for biogas flows 3/h, biogas purification is not economical, and one-step process according to the big gap between methane and non-methane-gas in solubility at higher pressure or lower temperature, should be condidered. New anaerobic digestion processes, such as micro-aerobic process, electrolysis enhancing methane production process, process of internal circulation anaerobic digester (ICAD) with sewage source heat pump, may all enhance biogas producton or lower biogas production cost. In addition, suitable environmental conditions, such as organic loading rate (OLR), solid retention time (SRT), hydraulic retention time (HRT) and surface area, are all beneficial to enhance methane fermentation. Furthermore, new operation modes and optimal dose of trace metals might be selected.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

522-528

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Largus TA, Khursheed K, Muthanna HA, et al. TRENDS Biotechnol, 2004, 22:477-485

Google Scholar

[2] Laufenberg G, Kunz B, Nystroem M. Bioresour Technol, 2003, 87:167-198

Google Scholar

[3] Sang-Hyoun K, Sun-Kee H, Hang-Sik S. Int J Hydrogen Energy, 2004, 29:1607-1616

Google Scholar

[4] Cao Y, Pawłowski A. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1657–1665

Google Scholar

[5] Bajracharya T R, Dhungana A, Thapaliya N, et al. Journal of the Institute of Engineering, 2009, 7(1): 90-98

Google Scholar

[6] Amnat C, Ralf C. FEMS Microbiol Ecol, 2000, 31:73-86

Google Scholar

[7] Abatzoglou N, Boivin S. Biofuels, Bioproducts and Biorefining, 2009, 3(1): 42–71

Google Scholar

[8] Truong L V A, Abatzoglou N. Biomass and Bioenergy, 2005, 29(2): 142–151

Google Scholar

[9] Hernández S P, Scarpa F, Fino D, et al. International Journal of Hydrogen Energy, 2011, 36(13): 8112–8118

DOI: 10.1016/j.ijhydene.2011.01.055

Google Scholar

[10] Dubois L, Thomas D. Chemical Engineering & Technology, 2010, 33(10): 1601–1609

Google Scholar

[11] Lei X, Sugiura N, Feng C, et al. Journal of Hazardous Materials, 2007, 145(3): 391–397

Google Scholar

[12] Lindeboom R E F, Fermoso F G, Weijma J et al. Water science and technology, 2011, 64(3): 647-653

Google Scholar

[13] Lindeboom R E F, Weijma J, Lier J B. Environ. Sci. Technol, 2012, 46 (3): 1895–(1902)

Google Scholar

[14] Wei C, Zhang T, Feng C, et al. Biodegradation, 2011, 22:347-357

Google Scholar

[15] Zhang D, Zhu W, Tang C, et al. Bioresource Technology, 2012, 104: 136–143

Google Scholar

[16] Shin S G, Yoo S, Hwang K, et al. Process Biochemistry, 2011, 46(8): 1607–1613

Google Scholar

[17] Stephenson R J,Patoine A,Guiot SR. Water Res, 1999, 12: 2855-2863

Google Scholar

[18] Tartakovsky B, Mehta P, Bourque J S, et al. Bioresource Technology, 2011, 102(10): 5685–5691

DOI: 10.1016/j.biortech.2011.02.097

Google Scholar

[19] Vanyushina A Y, Nikolaev Y A, Agarev A M, et al. Water Sci Technol. 2012, 65(3): 403-409

Google Scholar

[20] McKeown R M, Hughes D, Collins G, et al. Current Opinion in Biotechnology, 2011, DOI: 10. 1016/j.copbio. 2011.11.025

Google Scholar

[21] Jiang Y, Wu J, Tian L, et al. Water Practice & Technology, 2012

DOI: 10.2166/wpt.2012.014

Google Scholar

[22] Nadais H, Barbosa M, Capela I, et al. Energy, 2011,36(4): 2164–2168

Google Scholar

[23] Soto M E, Morelos C S, Torres J J H. Water Science & Technology, 2011,64(8): 1629–1635

Google Scholar

[24] Sampaio M A, Gonçalves M R, Marques I P. Bioresource Technology, 2011, 102(23): 10810–10818

DOI: 10.1016/j.biortech.2011.09.001

Google Scholar

[25] Riau V, De la Rubia M, Pérez M. Journal of Chemical Technology and Biotechnology, 2012

DOI: 10.1002/jctb.3709

Google Scholar

[26] Kayranli B, Ugurlu A. Desalination, 2011, 278(1–3): 77-83

Google Scholar

[27] Abdul-Sattar N, Jerry D M. Environ Sci Technol, 2011, 45 (17), p.7561–7569

Google Scholar

[28] Aldin S, Nakhla G, Ray M B. Ind Eng Chem Res, 2011, 50 (18), p.10843–10849

DOI: 10.1021/ie200385e

Google Scholar

[29] Halalsheh M, Kassa G, Yazajeen H. Bioresource Technology, 2011, 102(2): 748–752

Google Scholar

[30] Bolzonella D, Cavinato C, Fatone F, et al. Waste Management, 2012, 32(6) :1196–1201

Google Scholar

[31] Vavilin V A, Vasiliev V B, Rytov S V. Bioresource Technology, 1995, 52(1) : 25–32

Google Scholar

[32] Nie Y Q, Liu H, Du G C, et al. Bioresource technology, 2008, 99: 2989-2995

Google Scholar

[33] Nie Y Q, Liu H, Du G C, et al. Process Biochemistry, 2007, 42(4): 599-605

Google Scholar

[34] Scherer P, Lippert H, Wolff G. Biol Trace Elem Res. 1983, 5: 149–163

Google Scholar

[35] Yue Z B, Yu H Q, Wang Z L. Bioresour Technol. 2007, 98: 781–786

Google Scholar

[36] Zhang Y S, Zhang Z Y, Suzukic K, et al. Biomass Bioenergy, 2003, 25: 427–433

Google Scholar

[37] Zandvoort M H,Hullebuseh E D,Fermoso F G,et al. Eng Life Sci, 2006, 6(3):293-301

Google Scholar

[38] Mu H, Chen Y, Xiao N. Bioresource Technology, 2011, 102(22): 10305–10311

Google Scholar

[39] Sukias J P S, Craggs R J. Water science and technology, 2011, 63(5): 835-840

Google Scholar

[40] Wu D, Yang Z, Tian G. Journal of Hazardous Materials, 2011, 195: 170–174

Google Scholar

[41] Zhang L, Lee Y W, Jahng D. Bioresource Technology, 2011, 102(8): 5048–5059

Google Scholar

[42] Zhou J, Zheng W, Li X M, et al. Acta Scientiae Circumstantiae, 2011, 31(8):1691-1698

Google Scholar