Antioxidative Activity and Functional Properties of Hydrolysates of Camellia Seed Meal Treated with Trypsin

Article Preview

Abstract:

Antioxidative activity and functional properties of hydrolysates prepared from defatted camellia seed meal(DCSM), using trypsin, with a degree of hydrolysis(DH) of 21.69% were determined. At this DH, the hydrolysates show the highest hydroxyl and superoxide anion radical scavenging activity (over 69.15 % and 78.22%, respectively). The functionalities of hydrolysates such as solubility, water-holding capacity,emulsifying activity, foaming capacity and foaming stability are remarkably improved at all test pH range. These results indicate that the DCSM hydrolysised by trypsin to produce hydrolysates with desirable antioxidative activity and functional properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1174-1177

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yang, B., Yang, H. S., Li, J et al. Food Chemistry, Vol.124 (2011), p.551–555.

Google Scholar

[2] Guan, X., Yao, H. Y., Chen, Z. X et al . Food Chemistry, Vol.101 (2007), p.163–170

Google Scholar

[3] Yin, S. W., Tang, C. H., Cao, J. S et al. Food Chemistry, Vol.106(2008), p.1004–1013

Google Scholar

[4] Sakanaka, S., & Tachibana, Y. Food Chemistry, Vol.95 (2006), p:243–249

Google Scholar

[5] Thiansilakul, Y., Benjakul, S., & Shahidi, F. Food Chemistry, Vol.103 (2007), p.1385–1394.

Google Scholar

[6] Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec-Plé, R., Barkia, A., Guillochon, D.,et al. Food Chemistry, Vol.118(2010), p.559–565.

DOI: 10.1016/j.foodchem.2009.05.021

Google Scholar

[7] Tang, C. H., Ten, Z., Wang, X. S et al.Journal of Agricultural and Food Chemistry,Vol.54(2006),p.8945–8950.

Google Scholar

[8] Adler-Nissen, J. New York, USA: Elsevier Applied Science Publishers (1986).

Google Scholar

[9] Rosen G.M., Rauckman, E.J. Methods Enzymol. Vol.105(1984), p.198–209.

Google Scholar

[10] Guo, Q.,Zhao, B., Shen, S et al. Biochem.Biophys. Acta 1427(1999), p.13–23.

Google Scholar

[11] Tang C H.Journal of Food Engineering. Vol.82(2007),pp.568-576.

Google Scholar

[12] Yamashita. Chitosanase.Kichin Kitosan Kenkyu, 5(2) (1999),pp.148-149

Google Scholar

[13] Pearce K N, Kinsella J E. J AgriF ood Chem, Vol. 26(3) (1978), pp.716-723.

Google Scholar

[14] AGYARE K K,ADDO K,XIONG Y L..Food Hydrocolloids, Vol.23(2009),pp.72-81.

Google Scholar

[15] Molina Ortiz, S. E., & Wagner, J. R..Food Research International, Vol.35(2002), p.1–518.

Google Scholar

[16] Kristinsson, H. G., & Rasco, B. A. Critical Reviews in Food Science and Nutrition, Vol.40(1) (2000), p.81.

Google Scholar

[17] Felix, A., Hill, R. A., & Diarra, B. Animal Production, Vol.51(1990),p.47–60.

Google Scholar