Characterization of the Dynamic Changes of Microorganisms in Cutlassfish (Trichiurus haumela) under the Cold Storage with Composite Natural Preservatives Based on Culture-Dependent and 16S rRNA-DGGE Technology

Article Preview

Abstract:

In this study, the main microbe dynamic changes of cutlassfish (Trichiurus haumela) treated with composite natural preservatives under the cold storage (4±1) °C were studied by the methods of culture-dependent and denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis based on the sequence of 16S rRNA V3 region gene, which provided the theory basis and reference to the composite natural preservatives’ mechanism and extended the shelf-life of aquatic products. The results showed that 13 kinds of bacteria were identified by the culture-dependent methods, the dominant bacteria belonged to Shewanella putrefaciens and Pseudomonas fluorescens. By sequencing analysis, 12 kinds of bacteria in main DGGE spectra stripe of cutlassfish. In the later periods, the specific spoilage organism (SSO) for the treatment group with composite natural preservatives and the controlled of cutlassfish were highly similar. Psychrobacter sp. was the main bacterium in the initial stage of the storage. With the extension of storage time, the proportion of Shewanella sp. and Pseudomonas sp. increased gradually and they took the place of Psychrobacter sp. to be the dominant bacteria in the process of storage. Thereinto, Pseudomonas fluorescens and Vibrio sp. both took high proportions in the process of storage. At the same time, composite natural preservatives had an obvious growth inhibition effects on the bacteria of cutlassfish such as Shewanella sp. and Pseudomonas sp..

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1498-1506

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bi J.Z., Shao C.W., Miao G.D., Ma H.Y., Chen S.L., 2009. Isolation and characterization of 12 microsatellite loci from cutlassfish (Trichiurus haumela). Conserv Genet. 10, 1171-1173.

DOI: 10.1007/s10592-008-9736-5

Google Scholar

[2] Jackson, T.C., Acuff, G.R., & Dickson, J.S., 1997. Meat, poultry and seafood. In M. P.Doyle, & T. J. Beuchat (Eds.), Food microbiology: fundamentals and frontiers (p.83−100). Washington, D.C: ASM Press.

Google Scholar

[3] Hilario, E., Buckley, T. R., & Young, J.M., 2004. Improved resolution of the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Antonie van Leeuwenhoek, 86, 51−64.

DOI: 10.1023/b:anto.0000024910.57117.16

Google Scholar

[4] Gennari M, Tomaselli S, Cotrona V. 1999. The microflora of fresh and spoiled sardines (Sardina pilchadus) caught in Adriatic (Mediterranean) sea and stored in ice. Food Microbiology, 16, 15- 28.

DOI: 10.1006/fmic.1998.0210

Google Scholar

[5] Taoukis P S, Koutsoumanis K, Nychas G J E., 1999. Use of time temperature integrators and predictive modeling for shelf life control of chilled fish under dynamic storage conditions. International Journal of Food Microbiology, 53, 1-31.

DOI: 10.1016/s0168-1605(99)00142-7

Google Scholar

[6] Gram L, Huss H H., 1996. Microbiological spoilage of fish and fish product. International Journal of Food Microbiology, 33, 121-137.

DOI: 10.1016/0168-1605(96)01134-8

Google Scholar

[7] Gillespie N C, Maerae I C., 1975. The bacterial flora of some Queensland fish and its ability to cause spoilage. Journal of Applied Bacteriology, 39, 91-100.

DOI: 10.1111/j.1365-2672.1975.tb00549.x

Google Scholar

[8] Blixt, Y., & Borch, E., 2002. Comparison of shelf life of vacuum-packed pork and beef. Meat Science, 60, 371−378.

DOI: 10.1016/s0309-1740(01)00145-0

Google Scholar

[9] Amann R.I,Ludwig W,Schlefer K.H.,1995. Phylogenetic identification in situ detection of individual microbial cells without cultivation. Microbial Reviews, 59, 143-169.

DOI: 10.1128/mr.59.1.143-169.1995

Google Scholar

[10] Pace N.R., 1997. A Molecular View of Microbial Diversity and the Biosphere. Science, 276, 734-740.

DOI: 10.1126/science.276.5313.734

Google Scholar

[11] Ercolini, D., 2004. PCR–DGGE fingerprinting: novel strategies for detection of microbes in food. Journal of Microbiological Methods, 56, 297−314.

DOI: 10.1016/j.mimet.2003.11.006

Google Scholar

[12] Maria B.H., Morten S., Bjorn T.L., et.al, 2007. Characteriasation of the dominant bacterial population in modified atmosphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S rDNA-DGGE. Food Microbiology, 24, 362-371.

DOI: 10.1016/j.fm.2006.07.018

Google Scholar

[13] Maria B.H., Bjorn T.L., Morten S., Jan T.R., 2007. Characterisation of the bacterial flora of modified atmosphere packaged farmed Atlantic cod (Gadus morhua) by PCR-DGGE of conserved 16S rRNA gene regions. International Journal of Food Microbiology, 117, 68-75.

DOI: 10.1016/j.ijfoodmicro.2007.02.022

Google Scholar

[14] Jiang Y., Gao F., Xu X.L., Su Y., Ye K.P., Zhou G.H., 2010. Changes in the bacterial communities of vacuum-packaged pork during chilled storage analyzed by PCR-DGGE. Meat Science, 86, 889-895.

DOI: 10.1016/j.meatsci.2010.05.021

Google Scholar

[15] Satokari, R. M., Vaughan, E. E., Akkermans, A. D. L., Saarela, M., & de Vos, W. M., 2001. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel eletrophoresis. Applied and Environmental Microbiology, 67, 504−513.

DOI: 10.1128/aem.67.2.504-513.2001

Google Scholar

[16] Randazzo, C. L., Torriani, S., Akkermans, A. D. L., de Vos,W. M., & Vaughan, E. E., 2002. Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Applied and Environmental Microbiology, 68, 1882−1892.

DOI: 10.1128/aem.68.4.1882-1892.2002

Google Scholar

[17] Sambrook.J., DAVID W.RUSSELL, 2002. Molecular Cloning a laboratory Manual, USA.

Google Scholar

[18] Muyzer G., 1999. DGGE/TGGE a method for identifying genes from natural ecosystems, Current of Opinion Microbiology, 2, 317-322.

DOI: 10.1016/s1369-5274(99)80055-1

Google Scholar

[19] Muyzer, G. de Weal, E.C., & Uitterlinden, A.,1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied of Environment Microbiology, 59, 695-700.

DOI: 10.1128/aem.59.3.695-700.1993

Google Scholar

[20] Muyzer G., Smalla, K., 1998. Application of denaturing gradient gel electrophoresis(DGGE)and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie van Leeuwenhoek, 73, 127-141.

DOI: 10.1007/springerreference_76317

Google Scholar

[21] Nübel, U., Engelen, B., et al.,1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel elelectrophoresis, Journal of Bacteriology, 178, 5636-5643.

DOI: 10.1128/jb.178.19.5636-5643.1996

Google Scholar

[22] Theelen, B., Silvestri, M., Gueho, E., van Belkum, A., & Boekhout, T., 2001. Identification and typing of Malassezia yeasts using amplified fragment length polymorphisms (AFLP), random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE). FEMS Yeast Research, 1, 79-86.

DOI: 10.1111/j.1567-1364.2001.tb00018.x

Google Scholar

[23] Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J., 2009. Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114, 1173–1182.

DOI: 10.1016/j.foodchem.2008.11.047

Google Scholar

[24] Negi PS, Jayaprakasha GK, Jena BS., 2003. Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chemistry, 3: 393−397.

DOI: 10.1016/s0308-8146(02)00279-0

Google Scholar

[25] Gill C.O., 1996. Extending the storage life of raw. Meat Science, 43, 99-109.

DOI: 10.1016/0309-1740(96)00058-7

Google Scholar

[26] Gurtler, V., Garrie, H.D., & Mayall, B.C., 2002. Denaturing gradient gel electrophoretic multilocus sequence typing of Staphylococcus aureus isolates. Electrophoresis, 23, 3310-3320.

Google Scholar