Antimicrobial Activity and Interaction with Bovine Serum Albumin of Nickel(II) Complex

Article Preview

Abstract:

The binding reaction of nickel(II) complex [Ni(C16H20N2)2•(H2O)2]Cl2•C3H7NO with bovine serum albumin(BSA) was studied by fluorescence spectroscopy under the simulative physiological conditions. The experimental results show that the fluorescence quenching of BSA by nickel(II) complex is a result of the formation of ground state complex and the quenching mechanism was static quenching. The binding constants were 4.24×103 L•mol−1 at 293K with one binding site. The antimicrobial activity study found that the nickel(II) complex was active against Escherichia coli, Staphylococcus aureus and Bacillus subtilis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1831-1834

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.M. V. Kumar, P.K. Radhakrishnan: Inorg. Chim. Acta. Vol. 375 (2011), p.84

Google Scholar

[2] P.J. Cox, G.Psomas, C.A. Bolos: Bioorgan. & Med. Chem. Vol. 17 (2009), p.6054

Google Scholar

[3] E. Soleimani: J. Mol. Struct. Vol. 995 (2011), p.1

Google Scholar

[4] A.A. Fahem: Spectrochim. Acta A. Vol. 88 (2012), p.10

Google Scholar

[5] K.C. Skyrianou, V. Psycharis, C.P. Raptopoulou, D.P. Kessissoglou, G. Psomas: J. Inorg. Biochem. Vol. 105 (2011), p.63

Google Scholar

[6] M. Mondelli, V. Brune, G. Borthagaray, J. Ellena: J. Inorg. Biochem. Vol. 102 (2008), p.285

Google Scholar

[7] J.K. Zhang, P.C. Wang, X.W. Wang, L. Wang: J. Organomet. Chem. Vol. 696 (2011), p.3697

Google Scholar

[8] R. Prabhakaran, R. Sivasamy, J. Angayarkanni, R. Huang, P. Kalaivani, R. Karvembu, F. Dallemer, K. Natarajan: Inorg. Chim. Acta. Vol. 374 (2011), p.647

DOI: 10.1016/j.ica.2011.03.020

Google Scholar

[9] M.V. Angelusiu, S.F. Barbuceanu, C. Draghici, G.L. Almajan: Europe. J. Med. Chem. Vol. 45 (2010), p. (2055)

Google Scholar

[10] F. Azevedo, C.Freire, B. Castro: Polyhedron. Vol. 21 (2002), p.1695

Google Scholar

[11] J.R. Hartman, M.Y. Combariza, R.W. Vachet: Inorg. Chim. Acta. Vol. 357 (2004), p.51

Google Scholar

[12] T.R. Todorović, U. Rychlewska, B. Warżajtis, D.D. Radanović, N.R. Filipović, I.A. Pajić, D.M. Sladić, K.K. Andelković: Polyhedron. Vol. 28 (2009), p.2397

DOI: 10.1016/j.poly.2009.05.002

Google Scholar

[13] P. Sathyadevi, P. Krishnamoorthy, M. Alagesan, K. Thanigaimani, P.T. Muthiah, N. Dharmaraj: Polyhedron. Vol. 31 (2012), p.294

DOI: 10.1016/j.poly.2011.09.021

Google Scholar

[14] W. Du, T.Teng, C.C. Zhou, L. Xi, J.Z. Wang: J. Lumin. Vol.132 (2012), p.1207

Google Scholar

[15] Y.L. Xiang, F.Y. Wu: Spectrochim. Acta A. Vol. 77 (2010), p.430

Google Scholar

[16] Y.F. Liu, H.T. Xia, D.Q. Wang, X.L. Gong: Acta Cryst. E. Vol. 65 (2009), p. m1526

Google Scholar

[17] F. Geng, L.-Q. Zheng, L.Yu , G.-Z. Li, C.-H. Tung. Process Biochem. Vol. 45 (2010), p.306

Google Scholar

[18] N. Shahabadi, M. Maghsudi: J. Mol. Struct. Vol. 929 (2009), p.193

Google Scholar