Determination of Perfluorooctane Sulfonates (PFOS) in Four Chemical Materials by HPLC/MS/MS

Article Preview

Abstract:

A rapid method based on high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) with accelerated solvent extraction (ASE) or solid phase extraction (SPE) was developed for quantitative determination of perfluorooctane sulfonate (PFOS) in the coatings of nonstick pot, food packaging materials, waterborne coatings containing fluoride and fire-fighting foams. The linear calibration curve was obtained in the range of 0.002 - 0.1 μg/mL with a linear correlation coefficient (R2) of 0.998 or 0.999. The recovery for PFOS was in the range of 93.4 - 103% with relative standard deviation of 0.48 - 3.59%. The detection limit for PFOS was 0.4 μg/m2 with a signal-to-noise ratio of 10 for the coatings of nonstick pot and the food packaging materials, and 0.0002% for waterborne coatings containing fluoride and fire-fighting foams, both of which meet the restriction requirement for PFOS content in these chemical materials and consumer products in the EU directives.

You might also be interested in these eBooks

Info:

[1] G.L. Jr Kennedy, J.L. Butenhoff, G.W. Olsen, J.C. O'Connor, A.M. Seacat, R.G. Perkins, L.B. Biegel, S.R. Murphy and D.G. Farrar: Crit. Rev. Toxicol. Vol.34 (2004), p.351

DOI: 10.1080/10408440490464705

Google Scholar

[2] C. Lau, J.L. Butenhoff and J.M. Rogers: Toxicol. Appl. Pharmacol. Vol.198 (2004), p.231

Google Scholar

[3] European Union (EU) (2006). Directive 2006/122/EC of the European Parliament and of the Council of 12 December 2006 amending for the 30th time Council Directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the Member States relating to restrictions on the marketing and use of certain dangerous substances and preparations (perfluorooctane sulfonates), December 27th, 2006.

DOI: 10.5040/9781472559500.0009

Google Scholar

[4] U. Berger and M. Haukås: J. Chromatogr. A.Vol.1081 (2005), p, 210

Google Scholar

[5] H.F. Schröder and R.J. Meesters: J. Chromatogr. A. Vol.1082 (2005), p.110

Google Scholar

[6] T. Ohya, N. Kudo ; E. Suzuki and Y. Kawashima: J. Chromatogr. B Biomed. Sci. Appl. Vol. 720 (1998), p.1

Google Scholar

[7] M. Takino, S. Daishima and T. Nakahara: Rapid Commun, Mass Spectrom. Vol.17 (2003), p.383

Google Scholar

[8] N. Kudo, N. Banda and Y. Kawashima: Toxicol. Lett. Vol.99 (1998), p.183

Google Scholar

[9] J.W. Martin, D.C. Muir, C.A. Moody, D.A. Ellis, W.C. Kwan, K.R. Solomon and S.A. Mabury: Anal. Chem. Vol.74 (2002), p.584

Google Scholar

[10] C.A. Moody, W.C. Kwan, J.W. Martin, D.C. Muir and S.A. Mabury: Anal. Chem. Vol. 73 (2001), p.2200

Google Scholar

[11] R. Guo, Y.Q. Cai and G.B, Jiang: Environ. Chem. Vol. 25 (2006), p.674

Google Scholar

[12] K.J. Hansen, L.A. Clemen, M.E Ellefson and H.O. Johnson: Environ. Sci. Technol. Vol. 35 (2001), p.766

Google Scholar

[13] A. Holm, S.R. Wilson, P. Molander, E. Lundanes and T. Greibrokk: J. Sep. Sci. Vol. 27 (2004), p.1071

Google Scholar

[14] Z. Kuklenyik, J.A. Reich, J. S. Tully, L.L. Needham, A.M. Calafat: Environ. Sci. Technol. Vol. 38 (2004), p.3698

Google Scholar

[15] Y.Y. Pan, Y.L. Shi and Y.Q Cai: Chin. J. Anal. Chem. Vol.36 (2008), p.1619

Google Scholar

[16] J.W. Martin, M.M. Smithwick, B.M. Braune, P. F. Hoekstra, D.C. Muir and S.A. Mabury: Environ. Sci. Technol. Vol.38 (2004), p.373

Google Scholar

[17] X.L. Huang, H.Q. Wu, F. Huang , X.S. Lin and Z.X. Zhu: Chin. J. Anal. Chem. Vol.35 (2007), p.1591

Google Scholar

[18] S.A. Beach, J.L. Newsted, K. Coady and J.P. Giesy: Rev. Environ. Contam. Toxicol. Vol.186 (2006), p.133

Google Scholar