The Effect of Chromium on the Optical Properties and Photoactivity of Nano-Particulate Rutile

Article Preview

Abstract:

Chromium doped rutile TiO2 was synthesized by either co-precipitation or impregnation (surface-doping) and characterized by XRD and reflectance spectroscopy. Chromium addition did not change the TiO2 structure nor did the structure of the co-precipitated products differ from that of the impregnated samples. However, chromium doping moved the absorption of both sets of products into the visible and significantly affected the TiO2 photocatalytic activity for isopropanol (IPA) oxidation. At high chromium concentrations the photoactivity of the co-precipitated samples was reduced by a larger amount than that of the impregnated samples; this was attributed to a higher concentration of Cr3+ ions in the rutile lattice. Unexpectedly, increased photoactivity was measured for low Cr levels of surface-doped rutile. This may be caused by increased electron-trapping, at surface Cr6+ ions, and correspondingly reduced, electron-hole recombination.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

502-506

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R. Nunes, O.C. Monteiro, A.L. Castro, et al.: Eur. J. Inorg. Chem.,Vol. (2008) p.961

Google Scholar

[2] S. Karvinen: Solid State Sci. Vol. 5 (2003) p.811

Google Scholar

[3] S. Karvinen: R-J. Lamminmaki: Solid State Sci. Vol. 5 (2003) p.1159

Google Scholar

[4] K. Wilke, H.D. Breuer: J. Photochem. Photobiol. A, Vol. 121 (1999) p.49

Google Scholar

[5] R. Khan, S.W. Kim, T.-J. Kim: J. Nanosci. Nanotechnol., Vol. 8 (2008) p.4738

Google Scholar

[6] W. Choi, A. Termin, M.R. Hoffmann: J. Phys. Chem., Vol. 98 (1994) p.13669

Google Scholar

[7] S. Ikeda, N. Sugiyama, B. Pal, et al.: Phys. Chem. Chem. Phys., Vol. 11 (2001) p.267

Google Scholar

[8] Z. Zhang, C-C. Wang, R. Zakaria, et al.: J. Phys. Chem. B, Vol . 102 (1998) p.10871

Google Scholar

[9] C-Y. Wang, C. Bottcher, D.W. Bahnemann, et al.: J. Mater. Chem., Vol. 13 (2003) p.2322

Google Scholar

[10] C. Martin, I. Martin, V. Rives, et al.: J. Catal., Vol. 134 (1992) p.434

Google Scholar

[11] Ch. Fountzoula, H.K. Matralis, Ch. Papadopoulou, et al.: J. Catal., Vol. 172 (1997) p.391

Google Scholar

[12] J.Chen, M.Yao, X. Wang: J. Nanopart. Res., Vol. 10 (2008) p.163

Google Scholar

[13] Z. Yang, L. Yin, E. Ou, et al.: Front. Chem. Eng. China Vol. 2 (2008) p.296

Google Scholar

[14] T.A. Egerton, E. Harris, E.J. Lawson, B. Mile, C.C. Rowlands: Phys. Chem. Chem. Phys., Vol 2 (2000) p.3275

Google Scholar

[15] T.A. Egerton, I.R. Tooley, J. Phys. Chem. B, Vol. 108 (2004) p.5066

Google Scholar

[16] K. Okada, N. Yamamoto, K. Kameshima, et al.: J. Am. Ceram. Soc., Vol. 84 (2001) p.1591

Google Scholar

[17] I.L. Cooper, T.A. Egerton, F. Qiu: J. European Ceram. Soc.,Vol. 29 (2009) p.637

Google Scholar

[18] J.E. Huheey, Inorganic Chemistry, Principles of structure and reactivity. Harper & Row (1983)

Google Scholar

[19] J.C. Evans, C.P. Relf, C.C. Rowlands, T.A. Egerton, A.J. Pearman: J. Mater. Sci. Lett., Vol. 4 (1985) p.809

Google Scholar