Preparation of Iodide-Thiolate Bridged Binuclear Ni-Ni Complexes via Versatile Reaction of Labile Ni(II)-S(thiolate) Bond

Article Preview

Abstract:

The reaction between Fe(CO)4I2 and Ni(SR)2(dppe) affords NiI2(dppe) due to the nucleophilic attack of iodide on the labile Ni-S(thiolate) bonds. The iodide-dithiolate-bridged binuclear Ni-Ni complexes [(dppe)Ni(µ-I)(µ-pdt)Ni(dppe)]I is readily prepared from the reaction between [NiI2(dppe)] and [Ni(pdt)(dppe)] [dppe = 1,2-bis(diphenyl phosphino)-ethane; pdt = 1,3-propane-dithiolate] in CH2Cl2 as a result of attack on Ni-I bond by the lone pairs of electrons on thiolato sulfur donors. The reaction between [FeCp(CO)2I] and [Ni(pdt)(dppe)] in CH2Cl2 processes extremely slowly. However, upon metathesis with NH4PF6, the iodide-thiolate bridged binuclear Ni-Ni complexes [(dppe)Ni(µ-I)(µ-pdt)Ni(dppe)]PF6 is formed from the reaction of iodide and the Ni(II)-S bonds. The reaction between [NiCl2(dppe)] and NH4PF6 and [Ni(pdt)(dppe)] gives a binuclear complex [(dppe)Ni(µ-pdt)Ni(dppe)]PF6 without a halide-bridge. These results suggest that the reactivity of Ni-SR bonds in the Ni-thiolate-phosphine complexes is tunable with regard to the electronic environment of second metal ion and the different reactivity of iodide moiety. Electrochemical and crystallographic results are also analyzed for relevant compounds.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

591-596

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Maroney: Curr. Opin. Chem. Biol. Vol. 3 (1999), p.188.

Google Scholar

[2] J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza and Y. Nicolet: Chem. Rev. Vol. 107 (2007), p.4273.

DOI: 10.1021/cr050195z

Google Scholar

[3] S.W. Ragsdale: J. Inorg. Biochem. Vol. 101 (2007), p.1657.

Google Scholar

[4] Q. Wang, A.C. Marr, A.J. Blake, C.Wilson and M. Schröder: Chem. Commun. (2003), p.2776.

Google Scholar

[5] C.A. Grapperhaus, S. Poturovic and M.S. Mashuta : Inorg. Chem. Vol. 41 (2002), p.4309.

Google Scholar

[6] L. Signor, C. Knuppe, R. Hug, B. Schweizer, A.Pfaltz and B.Jaun: Chem. Eur. J. Vol. 6 (2000), p.3508.

DOI: 10.1002/1521-3765(20001002)6:19<3508::aid-chem3508>3.0.co;2-w

Google Scholar

[7] J.A. Bellefeuille, C.A. Grapperhaus, A. Derecskei-Kovacs, J.H. Reibenspies and M.Y. Darensbourg: Inorg. Chim. Acta Vol. 300-302 (2000), p.73.

DOI: 10.1016/s0020-1693(99)00575-7

Google Scholar

[8] V.E. Marquez, J.R. Anacona, R.J. Hurtado, G.D. de Delgado and E.M. Roque: Polyhedron. 18 (1999), p.1903.

Google Scholar

[9] G. Dyer and J. Roscoe: Inorg. Chem. Vol. 35 (1996), p.4098.

Google Scholar

[10] E.P. Pfeiffer, M.L. Pasquier and W. Marty: Helv. Chim. Acta Vol 67 (1984), p.654.

Google Scholar

[11] E. Simon-Manso, P.Gantzel and C.P. Kubiak: Polyhedron Vol. 22 (2003), p.1641.

Google Scholar

[12] B.K. Breedlove, P.E. Fanwick and C.P. Kubiak: Inorg. Chem. Vol.41 (2002), p.4306.

Google Scholar

[13] M.Capdevila, P. Gonzalezduarte, C. Focesfoces, F.H. Cano and M. Martinezripoll: J. Chem. Soc. Dalton Trans. (1990), p.143.

Google Scholar

[14] W. Zhu, A.C. Marr, Q. Wang, F. Neese, D.J.E. Spencer, A.J. Blake, P. A. Cooke, C. Wilson and M. Schröder: Proc. Natl. Acad. Sci. U.S.A, Vol. 102 (2005), p.18280.

DOI: 10.1073/pnas.0505779102

Google Scholar