Synthesis of MoS2 Nanoparticles with Inorganic Fullerene-Like Structure from Molybdenum Trioxide and Sulfur

Article Preview

Abstract:

MoS2 nanoparticles with fullerene-like (IF-MoS2) structure were successfully obtained at heating temperature higher than 840 °C by chemical vapor deposition method in a three-tube furnace using MoO3 and S (sulfur) powders as raw materials. The synthesized samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and energy dispersion X-ray spectrometerrespectively. IF-MoS2 nanoparticles can be obtained only in the narrow temperature range of 840 °C-870 °C, and the diameter of IF-MoS2 nanoparticles increases with temperature. A gradual formation mechanism of IF-MoS2 nanoparticles was discussed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

601-604

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Crul and R. E. Smalley: Nature Vol. 318 (1985), p.162

Google Scholar

[2] S. Iijima: Nature Vol. 354 (1991), p.56

Google Scholar

[3] Y. Feldman, E. Wasserman, D. J. Srolovitz and R.Tenne: Science Vol. 267 (1995), p.222

Google Scholar

[4] Y. Q. Zhu, T. Sekine, Y. H. Li, M. W. Fay, Y. M. Zhao, C. H. P. Poa, W. X. Wang, R. Martin, P. D. Brown, N. Fleischer and R. Tenne: J. Am. Chem. Soc. Vol. 127 (2005), p.16263.

Google Scholar

[5] R. Dominko, M. Gaberscek, D. Arcon, A. Mrzel, M. Remskar, D. Mihailovic, S. Pejovnik and J. Jamnik: Electrochim. Acta Vol. 48 (2003), p.3079

DOI: 10.1016/s0013-4686(03)00384-0

Google Scholar

[6] J. Chen, S. L. Li and Z. L. Tao: J. Alloys Compd. Vol. 356 (2003), p.413

Google Scholar

[7] J. Chen, S. L. Li, Q. Xu and K. J. Tanaka: Chem. Commun. Vol. 1 (2002), p.1722

Google Scholar

[8] M. Bar-Sadan, A. N. Enyashin, S. Gemming, R. Popovitz-Biro, S. Y. Hong, Yehiam. Prior, R. Tenne and G. Seifert: J. Phys. Chem. B Vol. 110 (2006), p.25399

DOI: 10.1021/jp0644560

Google Scholar

[9] A. N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovitz-Biro, S. Y. Hong, Y. Prior, R. Tenne and G. Seifert: Angew. Chem. Int. Ed. Engl. Vol. 46 (2007), p.623

DOI: 10.1002/anie.200602136

Google Scholar

[10] W. K. Hsu, B. H. Chang, Y. Q. Zhu, W. Q. Han, H. Terrones, M. Terrones, N. Grobert, A. K. Cheetham, H. W. Kroto and D. R. M.Walton: J. Am. Chem. Soc. Vol. 122 (2000), p.10155

DOI: 10.1021/ja001607i

Google Scholar

[16] N. Sano, H. L. Wang, M. Chhowalla, I. Alexandrou, G. A. J. Amaratunga, M. Naito and T. Kanki: Chem. Phys. Lett. Vol. 368 (2003), p.331

Google Scholar

[11] R. L. D. Whitby, W. K. Hsu, P. K. Fearon, N. C. Billingham, I. Maurin, H. W. Kroto, D. R. M. Walton, C. B. Boothroyd, S. Firth, R. J. H. Clark and D. Collison: Chem. Mater. Vol. 14 2002, p.2209

DOI: 10.1021/cm011282k

Google Scholar