CuS Nanotubes:Microwave-Solvothermal Synthesis and Photocatalytic Property

Article Preview

Abstract:

Copper sulfide (CuS) nanotubes assembled by nanoparticles were successfully synthesized by reaction thiourea with Cu(OH)2 nanowire precursor which was obtained using CuCl2 and NaOH as raw materials in the solvent ethylene glycol at 80 °C by a facile microwave-assisted solvothermal method. The forming influencing factors of CuS nanotubes were investigated. One of the advantages of this method is that the preparation of CuS nanotubes can well duplicate the shape of the nanowire precursor, thus the simplicity and low cost can be achieved. The products are characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The photocatalytic property of the CuS samples was also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

605-609

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Wang, S.Y. Wang, Y.L. Gao, K.Y. Wang and M. Liu: Mater Sci Eng B Vol 133 (2006), p.167.

Google Scholar

[2] S.Y. Jeong, J.Y. Kim, H.D. Yang, B.N. Yoon, S.H. Choi, H.K. Kang, C.W. Yang and Y.H. Lee. Adv. Mater. Vol 15 (2003), p.1172.

Google Scholar

[3] H. Tan, E.Y. Ye and W.Y. Fan: Adv Mater Vol 18 (2006), p.619.

Google Scholar

[4] M. Zhang, Y. Bando and K. Wada: J Mater Res Vol 15 (2000), p.387.

Google Scholar

[5] N. Kouklin: Appl Phys Lett Vol 87(2005), Art. No. 203105.

Google Scholar

[6] H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima: J Mater Chem Vol 9 (1999), p.2971.

Google Scholar

[7] Y.C. Pu, J.R. Hwu, W.C. Su, D.B. Shieh, Y. Tzeng and C.S. Yeh: J Am Chem Soc Vol 128 (2006), p.11606.

Google Scholar

[8] H. Tong, Y.J. Zhu, L.X. Yang, L. Li and L. Zhang: Angew Chem Int Ed Vol 45 (2006), p.7739.

Google Scholar

[9] X.M. Li, H.B. Chu and Y. Li: J Solid State Chem Vol 179 (2006), p.96.

Google Scholar

[10] M.Y. Lu, Y.C. Chang and L.J Chen: J Vac Sci Technol A Vol 24 (2006), p.1336.

Google Scholar

[11] H.J. Niu and M.Y. Gao: Angew Chem Int Ed Vol 45 (2006), p.6462.

Google Scholar

[12] H. Ogihara, M. Sadakane, Y. Nodasaka and W. Ueda: Chem Mater Vol 18 (2006), p.4981.

Google Scholar

[13] J.R. Ota, and S.K. Srivastava: Nanotechnology Vol 16 (2005), p.2415.

Google Scholar

[14] Y. Wu, C. Wadia, W.L. Ma, B. Sadtler and A.P. Alivisatos: Nano Lett. Vol 8 (2008), p.2551.

Google Scholar

[15] A.B.F. Martinson, J.W. Elam and M.J. Pellin:Appl. Phys. Lett. Vol 94 (2009), Art. No.123107.

Google Scholar

[16] S.C. Liu, L.D. Chen, Q. Yao and F.Q. Huang: J. Phys. Chem. C Vol 112 (2008), p.12085.

Google Scholar

[17] L. Chen, Y.D. Xia, X.F. Liang, K.B. Yin, J. Yin, Z. G. Liu and Y.Chen: Appl. Phys. Lett. Vol 91 (2007), Art. No.073511.

Google Scholar

[18] T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama and M. Aono: Appl. Phys. Lett. Vol 82 (2003), p.3032.

DOI: 10.1063/1.1572964

Google Scholar

[19] Y. Chang, M.L. Lye and H.C. Zeng: Langmuir Vol 21 (2005), p.3746.

Google Scholar

[20] S.K. Srivastava, and P.Roy: Cryst. Growth Des. Vol 6 (2006), p.1921.

Google Scholar

[21] P.C. Xue, R. Lu, D.M. Li, M. Jin, C.H. Tan, C.Y. Bao, Z.M. Wang and Y.Y. Zhao: Langmuir Vol 20 (2004), p.1123.

Google Scholar

[22] J. Liu, and D.F. Xue: J. Mater. Chem. Vol 21 (2011), p.223.

Google Scholar

[23] X.L. Liu and Y.J. Zhu: Mater Lett Vol 65 (2011), p.1089.

Google Scholar