Synthesis and Characterization of the Monomeric Platinum(II) Complexes with 2,2’-Bipyridine Back-Bone Ligand

Article Preview

Abstract:

The reaction of platinum(II) complexes of [Pt(bpy-R)Cl2] (R = H; 2,2’-bipyridine(bpy), R = 2(CH)3; 4,4’-dimethyl-2,2’-biypridine (DM-bpy), R = 4(CH3); 3,3’-5,5’-tertamethyl-2,2’-bipyridiyl (TM-bpy), (1-3) or [Pt(1,10-phen-R’)Cl2] (R’ = H; 1,10-phenanthroline(1,10-phen), R’= 4(CH3); 3,4,7,8-tetramethyl-1,10-phenanthroline(3,4,7,8-tetramethyl-1,10-phen) (4-5) with 1,4-bis(5'-2',2"-bipyridine)benzene(bpy-Ph-bpy) affords the following monomeric platinium(II) complexes: [Pt(bpy)(bpy-Ph-bpy)]2+(1), [Pt(DM-bpy)(bpy-Ph-bpy)](2), and [Pt(TM-bpy)(bpy-ph-bpy)]2+(3), [Pt(1,10-phenanthroline)(bpy-ph-bpy)]2+2+(4), [Pt(3,4,7,82+-tetramethyl-1,10-phen)(bpy-ph-bpy)]2+ (5), respectively. These complexes were characterized by NMR, IR, UV/VIS and PL spectroscopy of the complexes were elucidated. The internal quantum yields of these platinum complexes are very high (0.13 ~ 0.99) and they emit light in the blue region (360 ~ 417 nm).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

811-815

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. G.Williams, S.Develay, D.L. Rochester, L. Murphy, Coord. Chem. Rev., 252, 2596 (2008). [2] R.C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev., 250, 2093 (2006). [3] J.Kavitha, S.Y. Chang, Y. Chi, J.K. Yu, Y.H. Hu, P. T. Chou, S.M. Peng, G.H. Lee, Y.T. Tao, C.H. Chien, A.J. Carty, Adv.Funct. Mater., 15, 223 (2005). M. Gouterman, F.P. Schwarz, P.D. Smith, D. Dolphin, J. Chem. Phys., 67, 659 (1973). [4] [5] D.L. Eastwood, M. Gouterman, J. Mol. Spectrosc., 35, 359 (1970). [6] R.C. Kwong, S. Silbey, T. Dubovey, M.A. Baldo, S.R. Forrest, M.E. Thompson, Chem. Mater., 11, 3709 (1999). [7] S.-W. Lai, M.C.W. Chan, T.-C. Cheung, S.-M. Peng, C.-M. Che, Inorg. Chem., 38, 4046 (1999). [8] J.A.G. Williams, A. Beeby, S. Davies, J.A. Weinstein, C. Wilson, Inorg. Chem., 42, 8609 (2003). [9]

DOI: 10.1002/adfm.200400131

Google Scholar

[10] S.-Y. Chang, J.-L. Chen, Y. Chi, Inorg. Chem., 46, 11202 (2007). K. W. Yang, H. E. Hwang, H. S. Jung, C. H. Kwak, J. H. Lee, S. C. Jung, H. G. Ahn, and M. C. Chung, J. Nanosci. Nanotechnol., 11, 7331(2011). [11] P.F. Schwab, F. Fleischer, J. Michl, J. Org. Chem., 67, 443 (2002). [12] S.Bin-Salamon, S.H. Brewer, E.C. Depperman, S. franzenm J. W. Kampf, M.L. Kirk, R. K. Kumar, S. Lapp, K. Peariso, K.E. Preuss, D.A. Shultz, Inorg. Chem., 45, 4461 (2006). [13] E.Orselli, G. S. Kottas, A. Konradsson, P. Coppo, R. Frőhlich, L. De Cola, A. V. Dijken, M. Bűchel, and H. Bőrner, Inorg. Chem. 46, 11082 (2007).

DOI: 10.1021/ic060170y

Google Scholar