Thermal Properties of SMA-g-PEG as Novel Form-Stable PCMs for Thermal Energy Storage

Article Preview

Abstract:

Novel polymeric form-stable phase change material (SMA-g-PEG) was synthesized by the reaction of styrene-maleic anhydride copolymer (SMA) with polyethylene glycol (PEG). The phase transition behaviors and crystalline morphology were investigated by DSC and WAXD, and thermal stability was analyzed by TGA. The results indicated that the SMA-g-PEG has suitable transition temperature, high transition enthalpy and good thermal stability. The heat storage mechanism of SMA-g-PEG is the transfer between crystalline and amorphous states of the hanging segment PEG. And SMA, serving as ‘polymeric bone’, restricts the molecular chain of the hanging segment’s free movement at high temperature, so, SMA-g-PEG can keep its solid state in the transition processing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

1192-1196

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A.J. Huijbregts, L.J.A. Rombouts, S. Hellweg, R. Frischknecht, A.J. Hendriks, Van de Meent D, A.M.J. Ragas, L. Reijnders, J. Struijs. Environ Sci Technol. 40. 641–648(2006).

DOI: 10.1021/es051689g

Google Scholar

[2] W.L. Wang, X.X. Yang, Y.T. Fang, J. Ding. Appl Energ. 86. 170–174(2009).

Google Scholar

[3] C. Alkan, A. Sari, O. Uzun. AIChE J. 52. 3310–3314(2006).

Google Scholar

[4] B. Zalba, J.M. Marin, L.F. Cabeza. Appl Therm Eng. 23. 251–283(2003).

Google Scholar

[5] M. Kenisarin, K. Mahkamov. Renew Sust Energ Rev. 11. 1913–1965(2007).

Google Scholar

[6] A. Sari. Energy Conv Manage. 45. 2033–2042(2004).

Google Scholar

[7] B. He, V. Martin, F. Setterwall. Fluid Phase Equilibr. 212. 97–109(2003).

Google Scholar

[8] A. Karaipekli, A. Sari. Sol Energy. 83. 323–332(2009).

Google Scholar

[9] Q.Y. Yan, C. Liang, L. Zhang. Sol Energy Mater Sol Cells. 92. 1526–1532(2008).

Google Scholar

[10] T.L. Vigo, J.S. Bruno. Appl Polym Sci. 37. 371–379(1989).

Google Scholar

[11] W.D. Li, E.Y. Ding. Sol Energy Mater Sol Cells. 91. 764–768(2007).

Google Scholar

[12] P. Xi, X.H. Gu, B.W. Cheng, Y.F. Wang. Energy Conv Manage. 50. 1522–1528(2009).

Google Scholar

[13] A. Sari, C. Alkan, U. Kolemen, O. Uzun, S. Eudragit. J Appl Polym Sci. 101. 1402–1406(2006).

DOI: 10.1002/app.23478

Google Scholar

[14] Q. Cao, P.S. Liu. Eur Polym J. 42. 2931–2939(2006).

Google Scholar

[15] J.C. Su, P.S. Liu. Energy Conv Manage. 47. 3185–3191(2006).

Google Scholar

[16] Q.H. Meng, J.L. Hu. Sol Energy Mater Sol Cells. 92. 1260–1268(2008).

Google Scholar

[17] C.R. Chiang, F.C. Chang. Polymer. 38. 4807–4817(1997).

Google Scholar

[18] W.D. Li, E.Y. Ding. Sol Energy Mater Sol Cells. 91. 764–768(2007).

Google Scholar

[19] J. Hu, H. Yu, Y.M. Chen, M.F. Zhu. J Macromol Sci B. 45. 615–621(2006).

Google Scholar

[20] L. Cheng, L. Lei, S.R. Guo. Int J Pharm. 387. 129–138(2010).

Google Scholar