Preparation of Hydrotalcite-Like Catalysts Supported by Mo under Microwave and its Catalytic Properties for Phenol Hydroxylation

Article Preview

Abstract:

Under microwave irradiation, the ternary CuMgAl-HTLcs precursors were synthesized and MoO42- was loaded on the surface of these HTLcs. The results of XRD, FT-IR and SEM analysis indicated that the Mo anion was successfully loaded on the surface of the CuMgAl-HTLcs precursors. The activity of CuMgAl-31 for phenol hydroxylation was the highest, the conversion of phenol was 42.88% and ratio of catechol to hydroquinone was 2:1. CuMgAl-Mo-HTLcs advantageously increased the selectivity of hydroquinone with the ratio of hydroquinone to catechol reaching to 6:1 and about 4% conversion decreasing. Proposed the reaction mechanism of phenol hydroxylation by MoO42- supported HTLcs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

1451-1456

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. M. Parida, Sujata Mallick. J. Mol. Catal., 2008, 279: 104.

Google Scholar

[2] L. L. Lou, S. X. Liu. Catal. Commun., 2005, 6: 762.

Google Scholar

[3] Ravvewan K., Thirasak R., Santi K., Laszlo N., Pramoch R.. Catal. Commun., 2006, 7: 260.

Google Scholar

[4] K. M. Parida, Sujata M.. J. Mol. Catal. A: Chem., 2008, 279: 104.

Google Scholar

[5] L. F. Gou, Catherine J. M.. Chem. Commun., 2005, 5907.

Google Scholar

[6] Vicente R., Amit D., Srinivasan K.. Phys. Chem. Chem. Phys., 2001, 3: 4826.

Google Scholar

[7] J. Okamura, S. Nishiyama, S. Tsuruya, M. Masai, J. Mol. Catal., A Chem., 1998, 135: 133.

Google Scholar

[8] M.R. Maurya, S. J. J. Titinchi, S. Chand, I. M. Mishra, J. Mol. Catal., A Chem., 2002, 180: 201.

Google Scholar

[9] B. Chou, J. L. Tsai, S. Cheng, Microporous Mesoporous Mater., 2001, 48:309.

Google Scholar

[10] Ch. B. Liu, Zh. Zhao, X. G. Yang, X. K. Kai, Y. Wu. Catal. Commun., 1996, 6: 1019.

Google Scholar

[11] S. Kannan. Catal. Surveys from Asia, 2006, 10: 117.

Google Scholar

[12] Zhu K Zh, Liu Ch B, Ye X K, Wu Y. Acta Chim Sin, 1998, 56(1): 32.

Google Scholar

[13] C. Walling, R. A. Johnson. J. Am. Chem. Soc., 1975, 97(2): 363.

Google Scholar

[14] J. Wahlen, D. E. De Vos, P. A. Jacobs, P. L. Alsters. Adv. Synth. Catal., 2004, 346: 152.

Google Scholar

[15] S. Kannan, A Dubey, H Konzinger. J. Catalysis, 2005, 231: 381.

Google Scholar

[16] LIN Sh, ZHEN Y, WANG Sh M, DAI Y M. J Mol Catal, 2000, 156: 113.

Google Scholar

[17] F. Kooli, I. C. Chisem, M. Vucelic, and W. Jones, Chem. Mater. 1996, 8, 1969.

Google Scholar