Preparation of Nanosized RuB with Lower Ru Content Supported on Al2O3 and its Catalytic Activity

Article Preview

Abstract:

The nanosized RuB amorphous alloys with three different ruthenium contents supported on Al2O3 were prepared by means of impregnation, following the chemical reduction with KBH4 solution. The gas-phase benzene hydrogenation was used as a probe reaction to evaluate the catalytic activity of the prepared catalysts. The catalysts were characterized by BET, inductively coupled plasma (ICP), X-ray diffraction (XRD), and transmission electron micrograph (TEM). The experiment results show that the catalytic activity of the three amorphous alloy catalysts goes up first with the increasing of temperature and has a maximum at 443K; when the Ru loading amount is 0.24 %(wt.%) of the catalyst, which is very few, the conversion of benzene on RuB/Al2O3 amorphous alloy catalyst can reach to 99.50% at 443K.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

1467-1470

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Tiwari, S.A. Khan and R.S. Kher: Current Appl. Phy. Vol 12(2012), p.632

Google Scholar

[2] S.X. Xu, F.Y. Li and R.Z. Wei: Carbon Vol. 43(2005), p.861

Google Scholar

[3] D. G Tong, J. Y. Hu, Wei C., T. Zhang and X. Y. Ji: Mater. Lett. Vol 62 (2008), P. 2746

Google Scholar

[4] H. Li, J. Zhang and H.X.Li: Catal. Commun Vol 8(2007), p.2212

Google Scholar

[5] G. L. Parks, M. L. Pease , A. W. Burns, K. A. Layman, M. E. Bussell, X.Q. Wang, J. Hanson and J. A. Rodriguez: J. Catal. Vol 246 (2007), p.277

Google Scholar

[6] S. Mohseni Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad and D. Mohammadyani: Ultrasonics Sonochem. Vol.19 (2012), p.841

DOI: 10.1016/j.ultsonch.2011.11.017

Google Scholar

[7] D.L. Gin and J. H. Ding: Chem. Mater. Vol 12(2000), p.22

Google Scholar

[8] D. Acosta, N. Ramírez, E. Erdmann, H. Destéfanis and E. Gonzo: Catal. Today Vol 133–135 (2008), p.49

DOI: 10.1016/j.cattod.2007.12.125

Google Scholar

[9] D. G. Tong, W. Chu, P. Wu and Zhang, Li: RSC Advan. Vol 2 (2012), p.2369

Google Scholar

[10] H. J. Sun, W. Guo, X. L.Zhou, Z. H. Chen, Z.Y. Liu and S. C. Liu: Chin. J. Catal. Vol 32 (2011), p.1

Google Scholar

[11] H. B.Ji, Y.Y. Huang, L.X. Peng, X.D. Yao, Catal. Comm. Vol 9 (2008), p.27

Google Scholar

[12] Q. H. Liu, Z.L. Liu, L.W. Liao and X. F. Dong: J. Natur. Gas Chem. 19 (2010), p.497

Google Scholar

[13] S.C. Liu, Z.Y. Liu, Y.L. Liu, Y.M. Wu, Z. Wang, W.N. Zhu, J. Rare Earths, 24 (4), p.456 (in Chinese)

Google Scholar

[14] F. Bentaleb and E. Marceau: Micro. Meso. Mater. Vol 156(2012), p.40

Google Scholar

[15] S.F. Yin, Q.H. Zhang, B.Q. Xu, W.X. Zhu, C.F. Ng, C.T. Au, J. Catal. 224(2004) 384.

Google Scholar

[16] C.X. Han, X.M. Lin and B.G. Zhang: Acta Chim. Sinica Vol 65(2007), 799

Google Scholar

[17] M. Vanine, C.P. Fernando, G. Mónica, L. Pablo and F. Nora: React. Kinet.Catal.Lett. Vol 76 (2002), 53

Google Scholar

[18] G. Luo, S.R. Yan, M.H. Qiao, J.H. Zhuang and K.N. Fan: Appl. Catal. A Vol 275(2004), 95

Google Scholar