[1]
R. Kornhuber. Monotone multigrid methods for elliptic variational inequality. Numer Math, 1996, 72(1):481-499.
DOI: 10.1007/s002110050178
Google Scholar
[2]
R. Glowinski. Finite elements and variational inequalities. In The Mathematics of Finite Elements and Applications (Ed. J. R. Whiteman), NewYork:Academic Press.
Google Scholar
[3]
C. M. Elliot. On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem IMA J numer Anal, 1981, 1:115-125.
DOI: 10.1093/imanum/1.1.115
Google Scholar
[4]
P.G. Ciarlet, J.L. Lions. Handbook of Numerical Analysis,Vol. , Finite Element methods(Part1) North-Holland, 1991.
Google Scholar
[5]
R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of variational inequalities, North-Holland, 1976.
Google Scholar
[6]
J. Crank. Free and moving boundary problems,Oxford:Clarendon Press, 1988.
Google Scholar
[7]
G. Duvaut , J. L. Lions. Les inéquations en mécaniet en physique, Dunaud, Paris, 1972.
Google Scholar
[8]
Numerical mrethods for nonlinear variational problem, New York : Springer, 1984.
Google Scholar
[9]
C. M. Elliot, J. R. Ockendon. Weak and variational methods for moving boundary problems. Research Notes in Mathematics 53, London: Pitman, 1982.
Google Scholar
[10]
Badea L ,TAI Xuecheng, Wang Junping. Convergence rate analysis of a multiplicative Schwarz method for variational inequalities[J]. SIAM J. Numer. Anal. ,2003, 41: 1052-1073.
DOI: 10.1137/s0036142901393607
Google Scholar
[11]
TAI Xuecheng. Convergence rate analysis of domain decomposition method for obstacle problem[J].East-West J. Numer. Math. , 2001, 9: 233-252.
Google Scholar