[1]
Nguyen, N. T.; Wu, Z. G., Micromixers - a review. Journal of Micromechanics and Microengineering 2005, 15 (2), R1-R16.
DOI: 10.1088/0960-1317/15/2/r01
Google Scholar
[2]
Hardt, S.; Drese, K. S.; Hessel, V.; Schonfeld, F., Passive micromixers for applications in the microreactor and mu TAS fields. Microfluidics and Nanofluidics 2005, 1 (2), 108-118.
DOI: 10.1007/s10404-004-0029-0
Google Scholar
[3]
Hessel, V.; Lowe, H.; Schonfeld, F., Micromixers - a review on passive and active mixing principles. Chemical Engineering Science 2005, 60 (8-9), 2479-2501.
DOI: 10.1016/j.ces.2004.11.033
Google Scholar
[4]
Chang, C. C.; Yang, R. J., Electrokinetic mixing in microfluidic systems. Microfluidics and Nanofluidics 2007, 3 (5), 501-525.
DOI: 10.1007/s10404-007-0178-z
Google Scholar
[5]
Garstecki, P.; Fuerstman, M. J.; Fischbach, M. A.; Sia, S. K.; Whitesides, G. M., Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab on a Chip 2006, 6 (2), 207-212.
DOI: 10.1039/b510843h
Google Scholar
[6]
Mao, X.; Juluri, B.; Lapsley, M.; Stratton, Z.; Huang, T., Milliseconds microfluidic chaotic bubble mixer. Microfluidics and Nanofluidics 2010, 8 (1), 139-144.
DOI: 10.1007/s10404-009-0496-4
Google Scholar
[7]
Wang, S.; Jiao, Z.; Huang, X.; Yang, C.; Nguyen, N., Acoustically induced bubbles in a microfluidic channel for mixing enhancement. Microfluidics and Nanofluidics 2009, 6 (6), 847-852.
DOI: 10.1007/s10404-008-0357-6
Google Scholar
[8]
Liu, G.; Xu, J.; Yang, Y., Seed bubbles trigger boiling heat transfer in silicon microchannels. Microfluidics and Nanofluidics 2010, 8 (3), 341-359.
DOI: 10.1007/s10404-009-0465-y
Google Scholar
[9]
Yavas, O.; Leiderer, P.; Park, H. K.; Grigoropoulos, C. P.; Poon, C. C.; Leung, W. .; Do, N.; Tam, A. C., Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating. Physical Review Letters 1993, 70 (12), 1830.
DOI: 10.1103/physrevlett.70.1830
Google Scholar
[10]
Muruganathan, R.; Zhang, Y.; Fischer, T. M., Interfacial thermocapillary vortical flow for microfluidic mixing. Journal of the American Chemical Society 2006, 128 (11), 3474-3475.
DOI: 10.1021/ja0566883
Google Scholar
[11]
Hellman, A. N.; Rau, K. R.; Yoon, H. H.; Bae, S.; Palmer, J. F.; Phillips, K. S.; Allbritton, N. L.; Venugopalan, V., Laser-Induced Mixing in Microfluidic Channels. Anal. Chem. 2007, 79 (12), 4484-4492.
DOI: 10.1021/ac070081i
Google Scholar
[12]
Dijkink, R.; Ohl, C.-D., Measurement of cavitation induced wall shear stress. Applied Physics Letters 2008, 93 (25), 254107-3.
DOI: 10.1063/1.3046735
Google Scholar
[13]
Frenz, M.; Konz, F.; Pratisto, H.; Weber, H. P.; Silenok, A. S.; Konov, V. I., Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water. Journal of Applied Physics 1998, 84 (11), 5905-5912.
DOI: 10.1063/1.368906
Google Scholar
[14]
Ohl, C.-D.; Arora, M.; Dijkink, R.; Janve, V.; Lohse, D., Surface cleaning from laser-induced cavitation bubbles. Applied Physics Letters 2006, 89 (7), 074102-3.
DOI: 10.1063/1.2337506
Google Scholar
[15]
Akhatov, I.; Lindau, O.; Topolnikov, A.; Mettin, R.; Vakhitova, N.; Lauterborn, W., Collapse and rebound of a laser-induced cavitation bubble. Physics of Fluids 2001, 13 (10), 2805-2819.
DOI: 10.1063/1.1401810
Google Scholar