Laser-Induced Thermal Bubble-Mixing on a Microfluidic Platform for Lab-on-a-Chip Applications

Article Preview

Abstract:

This paper discusses the study of the multimode evolution of microfiber taper and its potential application of micromixer in the lab-on-a-chip. By using numerical simulation, multimode interference effects are demonstrated in the taper transition of a micro-nano fiber. Due to the leaked optical energy gasifies the solution surrounding the taper and produces air bubbles, the laminar flow effect is destroyed with the help of disturbance of air bubble and two solutions are mixed quickly. Therefore, it will be used in microfluidic platform for chemical analysis & testing, chemical synthesis and environmental monitoring.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

2197-2201

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nguyen, N. T.; Wu, Z. G., Micromixers - a review. Journal of Micromechanics and Microengineering 2005, 15 (2), R1-R16.

DOI: 10.1088/0960-1317/15/2/r01

Google Scholar

[2] Hardt, S.; Drese, K. S.; Hessel, V.; Schonfeld, F., Passive micromixers for applications in the microreactor and mu TAS fields. Microfluidics and Nanofluidics 2005, 1 (2), 108-118.

DOI: 10.1007/s10404-004-0029-0

Google Scholar

[3] Hessel, V.; Lowe, H.; Schonfeld, F., Micromixers - a review on passive and active mixing principles. Chemical Engineering Science 2005, 60 (8-9), 2479-2501.

DOI: 10.1016/j.ces.2004.11.033

Google Scholar

[4] Chang, C. C.; Yang, R. J., Electrokinetic mixing in microfluidic systems. Microfluidics and Nanofluidics 2007, 3 (5), 501-525.

DOI: 10.1007/s10404-007-0178-z

Google Scholar

[5] Garstecki, P.; Fuerstman, M. J.; Fischbach, M. A.; Sia, S. K.; Whitesides, G. M., Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab on a Chip 2006, 6 (2), 207-212.

DOI: 10.1039/b510843h

Google Scholar

[6] Mao, X.; Juluri, B.; Lapsley, M.; Stratton, Z.; Huang, T., Milliseconds microfluidic chaotic bubble mixer. Microfluidics and Nanofluidics 2010, 8 (1), 139-144.

DOI: 10.1007/s10404-009-0496-4

Google Scholar

[7] Wang, S.; Jiao, Z.; Huang, X.; Yang, C.; Nguyen, N., Acoustically induced bubbles in a microfluidic channel for mixing enhancement. Microfluidics and Nanofluidics 2009, 6 (6), 847-852.

DOI: 10.1007/s10404-008-0357-6

Google Scholar

[8] Liu, G.; Xu, J.; Yang, Y., Seed bubbles trigger boiling heat transfer in silicon microchannels. Microfluidics and Nanofluidics 2010, 8 (3), 341-359.

DOI: 10.1007/s10404-009-0465-y

Google Scholar

[9] Yavas, O.; Leiderer, P.; Park, H. K.; Grigoropoulos, C. P.; Poon, C. C.; Leung, W. .; Do, N.; Tam, A. C., Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating. Physical Review Letters 1993, 70 (12), 1830.

DOI: 10.1103/physrevlett.70.1830

Google Scholar

[10] Muruganathan, R.; Zhang, Y.; Fischer, T. M., Interfacial thermocapillary vortical flow for microfluidic mixing. Journal of the American Chemical Society 2006, 128 (11), 3474-3475.

DOI: 10.1021/ja0566883

Google Scholar

[11] Hellman, A. N.; Rau, K. R.; Yoon, H. H.; Bae, S.; Palmer, J. F.; Phillips, K. S.; Allbritton, N. L.; Venugopalan, V., Laser-Induced Mixing in Microfluidic Channels. Anal. Chem. 2007, 79 (12), 4484-4492.

DOI: 10.1021/ac070081i

Google Scholar

[12] Dijkink, R.; Ohl, C.-D., Measurement of cavitation induced wall shear stress. Applied Physics Letters 2008, 93 (25), 254107-3.

DOI: 10.1063/1.3046735

Google Scholar

[13] Frenz, M.; Konz, F.; Pratisto, H.; Weber, H. P.; Silenok, A. S.; Konov, V. I., Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water. Journal of Applied Physics 1998, 84 (11), 5905-5912.

DOI: 10.1063/1.368906

Google Scholar

[14] Ohl, C.-D.; Arora, M.; Dijkink, R.; Janve, V.; Lohse, D., Surface cleaning from laser-induced cavitation bubbles. Applied Physics Letters 2006, 89 (7), 074102-3.

DOI: 10.1063/1.2337506

Google Scholar

[15] Akhatov, I.; Lindau, O.; Topolnikov, A.; Mettin, R.; Vakhitova, N.; Lauterborn, W., Collapse and rebound of a laser-induced cavitation bubble. Physics of Fluids 2001, 13 (10), 2805-2819.

DOI: 10.1063/1.1401810

Google Scholar