Design and Simulation of Ascending Curvilinear Micro Channel for Cancer Cell Separation from Blood

Article Preview

Abstract:

Cancer is one of the leading causes for human death. However, if cancer cells are identified at initial stage, patient treatment will be low cost and successful. This research presents the design and simulation of ascending curvilinear micro channel for separation of particles resembling cancer cells. The separation system is designed and simulated by using inertia focusing cell separation technique. Computational fluid dynamics (CFD) design and simulation of ascending micro channel for cell separation using inertial focusing technique is used for separation. The simulation was carried in two stages; for focusing and separation. The mixture flow velocities were 0.105 m/s, 115 m/s and 125 m/s, and with Reynolds number Re = 8.5, 9.25 and 10.06. The ascending curvilinear channel design demonstrated favorable focusing, and separation. 100% purity and 100 % efficiency for separation of 15 µm particles was achieved at Re = 8.50 and maximum output/input ratio at velocity 0.105m/s. Cancer cells are also of size about 15 µm and the our proposed micro channel is a good candidate for cancer cells separation from blood.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

2361-2366

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications, Sens. Actuators A:Chem, 130 (2008) 917-942

DOI: 10.1016/j.snb.2007.10.064

Google Scholar

[2] M. G. Lee, C. Y. Bae, S. Choi, H. J. Cho and J. K. Park, High throughput inertial separation of cancer cells from human whole blood in a contraction–expansion array microchannel,15th International Conference on Miniaturized Systems for Chemistry and Life Sciences Washington, USA (2011) 2065-2067

Google Scholar

[3] A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han and C. T. Lim, Microfluidics for cell separation, Med. Biol. Eng. Comput. 48 (2010) 999-1014

DOI: 10.1007/s11517-010-0611-4

Google Scholar

[4] M. Radisic, R. K. Iyer, S. K Murthy, Micro- and nanotechnology in cell separation, Int. J. Nanomedicine. 1(2006) 3-14

Google Scholar

[5] A. A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration, Lab Chip, 8(2008) , 1906-1914

DOI: 10.1039/b807107a

Google Scholar

[6] J. Xuana, M. K. H. Leung, D. Y. C. Leunga, M. Ni, Density-induced asymmetric pair of Dean vortices and its effects on mass transfer in a curved microchannel with two-layer laminar stream, Chem. Eng. J. 171 (2011) 216-223

DOI: 10.1016/j.cej.2011.01.011

Google Scholar

[7] K. Nilpueng, S. Wongwises, Flow pattern and pressure drop of vertical upward gas–liquid flow in sinusoidal wavy channels, Exp. Therm. Fluid Sci. 30 (2006) 523-534

DOI: 10.1016/j.expthermflusci.2005.10.004

Google Scholar

[8] J.M. MacInnes, J.Ortiz-Osorio, P. J. Jordan, G. H. Priestman, R.W.K. Allen, Experimental demonstration of rotating spiral microchannel distillation, Chem. Eng. J. 159 (2010) 159-169

DOI: 10.1016/j.cej.2010.02.030

Google Scholar

[9] N. A. M Sajid, Z Abbas, T. Javed, Non-Newtonian fluid flow induced by peristaltic waves in a curved channel, Eur. J. Mech. B. Fluids, 29(2010) 387-394

DOI: 10.1016/j.euromechflu.2010.04.002

Google Scholar

[10] Z. Che, T.K. Wong, N.T Nguyen, An analytical model for a liquid plug moving in curved micro channels , Int. J. Heat. Mass. Trans. 53 (2010) 1977-1985

DOI: 10.1016/j.ijheatmasstransfer.2009.12.058

Google Scholar

[11] J. C. Chu, J. T. Teng, R. Greif, Experimental and numerical study on the flow characteristics in curved rectangular micro channels, Appl. Therm. Eng. 30(2010)1558-1566

DOI: 10.1016/j.applthermaleng.2010.03.008

Google Scholar

[12] S. Ookawara, D. Street, K. Ogawaa, Numerical study on development of particle concentration profiles in a curved microchannel,Chem. Eng. Sci. 61(2006) 3714 -3724

DOI: 10.1016/j.ces.2006.01.016

Google Scholar

[13] K. Jiao, B. Zho, P. Quan, Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode, J. Power Sources, 157 (2006) 226-243

DOI: 10.1016/j.jpowsour.2005.06.041

Google Scholar

[14] D. D. Carlo, J. F. Edd, D. Irimia, R. G. Tompkins, M. Toner, Equilibrium separation and filtration of particles using differential inertial focusing, Anal. Chem. 80(2008) 2204-2211

DOI: 10.1021/ac702283m

Google Scholar