Investigation of the Microcellular Foaming and Diffusion of Supercritical Carbon Oxide in the Polypropylene/TiO2 Nanocomposites

Article Preview

Abstract:

The nanocomposites composed of polypropylene (PP) and TiO2 nanoparticles with uniform dispersion (PP/TiO2 nanocomposite) were prepared. The effects of the content of TiO2 nanoparticles on the crystallinity of PP and the sorption amount (Ms) of CO2 in PP/TiO2 nanocomposite were investigated. The crystallinity of PP increased when the content of TiO2 was less than 2wt% and decreased Subscript text when the content was over 2wt% (Ms of CO2 decreased when the content of TiO2 nanoparticles was less (2 increased from 3 wt% to 5 wt%. The effects of sorption time, extended ranges of temperature and pressure on Ms of CO2 were also studied by gravimetric method. The mechanism of the sorption and desorption of supercritical CO2 in the PP/TiO2 nanocomposite was discussed. In addition, the pore density of the microcellular PP/TiO2 nanocomposite was controllable by tuning the Ms of CO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

342-348

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Kumar, Microcellular Polymers: Novel Materials for the 21st Century, Cellular Polymers Vol. 12 (1993) p.207.

Google Scholar

[2] V. Kumar, K. V. Nadella, Microcellular Foams, in: D. Eaves (Ed), Handbook of Polymer Foams, Rapra Technology limited, U. K., 2004.

Google Scholar

[3] W. G. Zheng, Y. H. Lee, C. B. Park, Journal of Applied Polymer Science Vol. 117 (2010) p.2972.

Google Scholar

[4] Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima, H. Masuoka, Fluid Phase Equilibria Vol. 125 (1996) p.129.

DOI: 10.1016/s0378-3812(96)03094-4

Google Scholar

[5] J. von Schnitzler, R. Eggers, Journal of Supercritical Fluids .Vol. 16 (1999) p.81.

Google Scholar

[6] O. Muth, T. Hirth, H. Vogel, Journal of Supercritical Fluids Vol. 19 (2001) p.299.

Google Scholar

[7] P. K. Davis, G. D. Lundy, J. E. Palamara, J. L. Duda, R. P. Danner, Industrial and Engineering Chemistry Research Vol. 43 (2004) p.153.

Google Scholar

[8] Y. Hussain, Y. T. Wu, P. J. Ampaw, C. S. Grant, Journal of Supercritical Fluids Vol. 42 (2007) p.255.

Google Scholar

[9] E. Assouline, A. Lustiger, A. H. Barber, C. A. Cooper, E. Klein, E. Wachtel, H. D. Wagner, Journal of Polymer Science Part B: Polymer Physics Vol. 41 (2003) p.520.

DOI: 10.1002/polb.10394

Google Scholar

[10] M. A. Lopez Manchado, L. Valentini, J. Biagiotti, J. M. Kenny, Carbon Vol. 43 (2005) p.1499.

Google Scholar

[11] J. S. Chiou, D. R. Paul, Polymer Engineering and Science Vol. 26 (1986) p.1218.

Google Scholar

[12] A. S. Michaels, J. A. Barrie, W. R. Vieth, Journal of Applied Physics Vol. 34 (1963) p.1.

Google Scholar

[13] S. Doroudiani, C. B. Park, M. T. Kortschot, Polymer Engineering Science Vol. 36 (1996) p.2645.

Google Scholar

[14] P. Rachtanapun, S. E. M. Selke, L. M. Matuana, Journal of Applied polymer Science, Vol. 88 (2003) p.2842.

Google Scholar

[15] K. A. Arora, A. J. Lesser, T. J. McCarthy, Macromolecules Vol. 31 (1998) p.4614.

Google Scholar

[16] B. Wong, Z. Y. Zhang, Y. P. Handa, Journal of polymer science Part B: Polymer Physics, Vol. 36 (1998) p.2025.

Google Scholar

[17] A. R. Berens, G. S. Huvard, ACS Symposium Series Vol. 406 (1989) p.207.

Google Scholar

[18] M. Tang, T. B. Du, Y. P. Chen, Journal of Supercritical Fluids Vol. 28 (2004) p.207.

Google Scholar