Preparation and Infrared Emissivity Study of Optically Active Polyurethane/Multiwalled Carbon Nanotubes Nanocomposites

Article Preview

Abstract:

This paper described the preparation of optically active polyurethanes (BPUs)/multiwalled carbon nanotubes (MWCNTs) composites through the high-intensity ultrasound. SEM and TEM observations showed the homogeneous coating of MWCNTs by BPU. The infrared emissivity (8-14μm) study revealed that the composites possessed much lower infrared values compared with those of the polyurethanes and nanotubes, due to the special interface effect. The lowest infrared emissivity values of nanocomposites were S-BPU/MWCNTs εmin=0.461 and R-BPU/MWCNTs εmin=0.418, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

362-365

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Chen, Y. M. Zhou, Synthesis and characterization of polyurethane/CdS-SiO2 nanocomposites via ultrasonic process, Appl. Surf. Sci. 255 (2008), 2244-2250.

DOI: 10.1016/j.apsusc.2008.07.089

Google Scholar

[2] C. Damle, A. Gole, M. Sastry, Multilayer langmuir-blodgett assemblies of hydrophobized CdS nanoparticles by organization at the air-water interface, J. Mater. Chem. 10 (2000), 1389-1393.

DOI: 10.1039/a910343k

Google Scholar

[3] Y. Cao, Y. M. Zhou, Y. Shan, (Ti,Sn)O2 solid solution self-aligned into "sandwich" array on grafted modification collagen matrix, Adv. Mater. 16 (2004), 1189-1192.

DOI: 10.1002/adma.200400028

Google Scholar

[4] P. Calvert, Nanotube composites - A recipe for strength, Nature 399 (1999), 210-211.

Google Scholar

[5] Y. L. Yang, M. C. Gupta, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding, Nano Lett. 5 (2005), 2131-2134.

DOI: 10.1021/nl051375r

Google Scholar

[6] L. Feng, J. W. Hu, Z. L. Liu, F. B. Zhao, G. J. Liu, Preparation and properties of optically active poly(N-methacryloyl L-leucine methyl ester), Polymer 48 (2007), 3616-3623.

DOI: 10.1016/j.polymer.2007.04.064

Google Scholar

[7] S. Kitagawa, R. Kitaura, S. Noro, Functional porous coordination polymers, Angew. Chem., Int. Ed. 43 (2004), 2334-2375.

DOI: 10.1002/anie.200300610

Google Scholar

[8] K. Nozaki, T. Terakawa, H. Takaya, Double-helical oligo esters: Chiral twist of two aromatic ester chains, Angew. Chem., Int. Ed. Engl. 37 (1998), 131-133.

DOI: 10.1002/(sici)1521-3773(19980202)37:1/2<131::aid-anie131>3.0.co;2-k

Google Scholar

[9] G. A. Carriedo, F. J. G. Alonso, M. P. Tarazona, Spectroscopic and solution properties of phenoxyphosphazene random copolymers containing optically active binaphthoxy groups, Macromolecules 33 (2000), 3671-3679.

DOI: 10.1021/ma991904b

Google Scholar

[10] Z. F. Liu, G. Bai, Y. S. Chen, Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites, J. Phys. Chem. C 111 (2007), 13696-13700.

DOI: 10.1021/jp0731396

Google Scholar

[11] J. Chen, Y. M. Zhou, Q. L. Nan, Preparation and properties of optically active polyurethane/TiO2 nanocomposites derived from optically pure 1,1 '-binaphthyl, Eur. Polym. J. 43 (2007), 4151-4159.

DOI: 10.1016/j.eurpolymj.2007.07.006

Google Scholar

[12] H. N. Xiao, Infrared readiating ceramics and their applications, China Ceramics 4 (1992), 42-46.

Google Scholar