Advances in Model Development for Carbon Nanotube Assembly by Dielectrophoresis

Article Preview

Abstract:

As a new type of materials, carbon nanotubes (CNTs) have been intensively studied due to their outstanding properties. Dielectrophoresis (DEP) is an effective method to assemble CNTs across a pair of electrical conductors for various applications. In DEP, CNTs suspended in dielectric liquid medium suffer a force imbalance due to induced dipole moment when subject to an externally applied non-uniform electric field, and move towards and finally deposit onto the electrode region. As a model plays a critical role in the numerical study of the DEP process, this paper introduces the theoretical background of DEP and basic DEP models based on the effective dipole moment method which has been widely accepted in the study of DEP. Particularly, the DEP force calculation methods developed recently for improved precision using these basic models are presented and discussed. A DEP model with high computing accuracy helps precisely predict a DEP process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

510-514

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Dai: Top. Appl. Phys. Vol. 80 (2001), p.29

Google Scholar

[2] S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Science Vol. 280 (1998), p.1744

Google Scholar

[3] J.-M. Bonard, T. Stora, J.-P. Salvetat, F. Maier, T. Stockli, C. Duschl, L. Forro, W.A. de Heer and A. Chatelain: Adv. Mater. Vol. 9 (1997), p.827

DOI: 10.1002/adma.19970091014

Google Scholar

[4] R. Krupke, F. Hennrich, H. V. Lohneysen and M.M. Kappes: Science Vol. 301 (2003), p.344

Google Scholar

[5] A. Javey, Q. Wang, A. Ural, Y. Li and H. Pai: Nano. Lett. Vol. 147 (2002), p.2929

Google Scholar

[6] P.L. McEuen, M.S. Fuhrer and H. Park: IEEE Trans. Nanotechnology Vol. 1 (2002 ), p.78

Google Scholar

[7] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff: Science Vol. 287 (2000), p.637

Google Scholar

[8] J.C. Lewenstein, T.P. Burgin, A. Ribayrol, L.A. Nagahara and R.K. Tsui: Nano. Lett. Vol. 2 (2002), p.443

Google Scholar

[9] S.G. Rao, L. Huang, W. Setyawan and S. Hong: Nature Vol. 425 (2003), p.36

Google Scholar

[10] C.P.R. Dockendorf, M. Steinlin, D. Poulikakos: Appl. Phys. Lett. Vol. 9 (2007), p.193116

Google Scholar

[11] N.R. Franklin, Y. Li, R.J. Chen, A. Javeyand and H.J. Dai: Appl. Phys. Lett. Vol. 79 (2002), p.4571

Google Scholar

[12] L. Delzeit, C.V. Nguye, R.M. Stevens, J. Han and M. Meyyappan: Nanotechnology Vol. 13 (2002), p.280

Google Scholar

[13] R.H.M. Chan, C.K.M. Fung and W.J. Li: Nanotechnology Vol. 15 (2004), p.672

Google Scholar

[14] J.E. Kim and C.S. Han: Nanotechnology Vol. 16 (2005), p.2245

Google Scholar

[15] A. Ramos, H. Morgan, N. Green, and A. Castellanos: J. Phys. D: Appl. Phys. Vol. 31 (1998), p.2338

Google Scholar

[16] H. Morgan, M. Hughes, and N. Green: Biophys. J. Vol. 77 (1999), p.516

Google Scholar

[17] H. Morgan and N.G. Green: AC Electrokinetic: Colloids and Nanoparticles (Research Studies, Hertfordshire, UK 2003).

Google Scholar

[18] T. Heida, W.L.C. Rutten and E. Marani: J. Phys. D: Appl. Phys. Vol. 35 (2002), p.1592

Google Scholar

[19] C.S. Han, H.W. Seo, H.W. Lee, S.H. Kim and Y.K. Kwak: Int. J. Precis. Eng. and manuf. Vol. 7 (2006), p.42

Google Scholar

[20] U.C. Wejinya, N. Xi, Y.T. Shen and K.W.C. Lai, in: 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice, France, p.925

Google Scholar

[21] L. An and C.R. Friedrich: J. Appl. Phys. Vol. 105 (2009), pp.074314-1

Google Scholar