Controlled Growth of Germanium Nanowires via a Solid–Liquid–Solid (SLS) Mechanism

Article Preview

Abstract:

In this study, germanium nanowires (GeNWs) were grown directly on gold-evaporated germanium substrates by a solid-liquid-solid (SLS) mechanism in the temperature range 550°C- 650°C. The growth of GeNWs is very sensitive to the growth temperature and only in a limited temperature range (575°C-625°C) can GeNWs having excellent morphology and high surface density be successfully grown. These long, thin, and straight GeNWs have a high aspect ratio and are surrounded by an oxide layer. The composition of corresponding oxide layers is GeOx (x<2). As the thickness of Au film is decreased from 9 nm to 1 nm, the average diameter of GeNWs decreases from 119.3 nm to 38.5 nm. Our experimental results demonstrate that the diameter of germanium nano¬wires can be controlled by the thickness of Au metal film.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

523-529

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu and Y. Masumoto, Visible photoluminescence of Ge microcrystals embedded in SO2 glassy matrices, Appl. Phys. Lett. 59 (1991) 3168.

DOI: 10.1063/1.105773

Google Scholar

[2] Y. Wu and P. Yang, Germanium nanowire growth via simple vapor transport, Chem. Mater. 12 (2000) 605-607.

DOI: 10.1021/cm9907514

Google Scholar

[3] Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello and S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett. 72 (1998) 1835-1837.

DOI: 10.1063/1.121199

Google Scholar

[4] J.L. Liu, S.J. Cai, G.L. Jin, S.G. Thomas and K.L. Wang, Growth of Si whiskers on Au/Si (111) substrate by gas source molecular beam epitaxy (MBE), J. Cryst. Growth 200 (1999) 106-111.

DOI: 10.1016/s0022-0248(98)01408-0

Google Scholar

[5] D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, H.T. Zhou and S.Q. Feng, Nanoscale silicon wires synthesized using simple physical evaporation, Appl. Phys. Lett. 72 (1998) 3458-3460.

DOI: 10.1063/1.121665

Google Scholar

[6] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi and S.Q. Feng, Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism, Chem. Phys. Lett. 323 (2000) 224-228.

DOI: 10.1016/s0009-2614(00)00519-4

Google Scholar

[7] R.L. Yang, X.B. Chen, W.Y. Yin, H.X. Dong, Y.Z. Song and H.Q. Yang, Preparation and Raman spectroscopy of GeO2 nanowires, J. Shaanxi Normal University (natural science edition) 36 (2008) 52-56.

Google Scholar

[8] Y.J. Park, I.T. Han, H.J. Kim, Y.S. Woo, N.S. Lee, Y.W. Jin, J.E. Jung, J.H. Choi, D.S. Jung, C.Y. Park and J.M. Kim, Effect of catalytic layer thickness on growth and field emission characteristics of carbon nanotubes synthesized at low temperatures using thermal chemical vapor deposition, Jpn. J. Appl. Phys. 41 (2002) 4679-4685.

DOI: 10.1143/jjap.41.4679

Google Scholar

[9] S.F. Lee, Y.P. Chang and L.Y. Lee, The effects of annealing Ni catalyst in nitrogen-based gases on the surface morphology and field-emission properties of thermal chemical vapor deposited carbon nanotubes, New Carbon Mater. 23 (2008) 302-308.

DOI: 10.1016/s1872-5805(09)60002-0

Google Scholar

[10] Y.Y. Wei, G. Eres, V.I. Merkulov and D.H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition, Appl. Phys. Lett. 78 (2001) 1394-1396.

DOI: 10.1063/1.1354658

Google Scholar