Size Controlled Synthesis of 2-6 nm Gold Nanoparticles via Controlling Concentration of the Reducing Agent and Temperature

Article Preview

Abstract:

We reported a facile synthesis route for size controlled preparation of gold nanoparticles (Au NPs) by controlling concentration of the reducing agent and temperature. Nearly monodisperse Au NPs with mean diameters of 2-6 nm are acquired via the reduction of HAuCl4 by NaBH4 in the presence of tri-n-octyl amine and dodecanethiol in solvent of toluene. Results indicate that concentration of the reducing agent and temperature are key factors to tune the particle size and uniformity in the synthesis of Au NPs. The as-synthesized Au NPs show size dependent surface plasmonic properties between 510 and 525 nm, while Au NPs with size smaller than 3 nm do not clearly show the property.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

572-576

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.G. Bastus, T.E. Sanchez, S. Pujals, et : ACSNANO. Vol.3 No.6 1335–1344 (2009).

Google Scholar

[2] C. Kojima, Y. Watanabe, H. Hattori, et : J. Phys. Chem. C. 115, 19091–19095 (2011).

Google Scholar

[3] M.C. Daniel, D. Astruc : Chem. Rev. 104, 293-346 (2004).

Google Scholar

[4] N.F. Zheng, J. Fan and G.D. Stucky : J. Am. Chem. Soc. 128, 6550-6551 (2006).

Google Scholar

[5] J. Turkevich, J. Hillier, P.C. Stevenson : Disc. Farad. Soc. 11, 55 (1951).

Google Scholar

[6] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, et. J. Phys. Chem. 110, 15700-15707 (2006).

DOI: 10.1021/jp061667w

Google Scholar

[7] G. Schmid : Chem. Rev. 92, 1709-1727 (1992).

Google Scholar

[8] J.H. Hodak, A. Henglein, G.V. Hartlanda : J. Chem. Phys. Vol.111 No.18 (1999).

Google Scholar

[9] M. Brust, M. Walker, D. Bethell, et : J. Chem. Soc. Commun. 801-802 (1994).

Google Scholar

[10] N.R. Jana, X.G. Peng : J. Am. Chem. Soc. 125, 14280-14281 (2003).

Google Scholar

[11] J.U. Song, D. Kim, D. Lee : Langmuir. 27, 13854-13860 (2011).

Google Scholar

[12] C.J. Murphy, N. R. Jana : AdV. Mater. 14, 80-82 (2002).

Google Scholar

[13] Z.A. Peng, X. Peng : J. Am. Chem. Soc. 124,3343 (2002).

Google Scholar

[14] N.R. Jana, L. Gearheart, C. J. Murphy : Langmuir 17, 6782-6788 (2001).

Google Scholar

[15] N.R. Jana, L. Gearheart, C. J. Murphy : Adv. Mater. Vol.13 No.18 (2001).

Google Scholar

[16] N.R. Jana, L. Gearheart, C. J. Murphy : Chem. Mater. 13, 2313-2322 (2001).

Google Scholar

[17] Y. Yang, Y. Yan, W. Wang, et. Nano Technology. 19 175603 (2008).

Google Scholar

[18] N.G. Bastus, J. Cmenge, V. Puntes : Langmuir. 27,11098-11105 (2011).

Google Scholar

[19] M.Suzuki, Y.Niidome, Y. Kuwahara, et. J. Phys. Chem. B. 108, 11660-11665 (2004).

Google Scholar

[20] I.O. Jimenez, F.M. Romero, N.G. Bastus, V. Puntes : J. Phys. Chem. 114, 1800-1804 (2010).

Google Scholar

[21] S. Peng, Y.M. Lee, C. Wang, et. Nano Research. 1: 229-234 (2008).

Google Scholar

[22] K.R. Brown, G.W. Daniel, and M.J. Natan : Chem. Mater. 12, 306-313 (2000).

Google Scholar

[23] I.O. Jimenez, N.G. Bastus, V. Puntes : J. Phys. Chem. 115, 15752-15757 (2011).

Google Scholar