Hydrothermal Synthesis and UV Absorption Property of Firewood-Like CeO2 Nanostructures

Article Preview

Abstract:

In this paper, we reported that firewood-like CeO2 nanostructures were synthesized via hydrothermal method in the present of cetyltrimethylammonium bromide (CTAB) for the first time. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to characterize the as-obtained sample. The UV absorption property of the product was investigated by UV-vis spectrophotometry. XRD result shows that the product was a cubic fluorite-type CeO2 phase with good crystallinity. FE-SEM and TEM analysis indicate that the firewood-like CeO2 nanostructures were composed of CeO2 nanoparticles with the average size of about 6-10 nm. The CeO2 shows excellent UV absorption for that the transmittance (T %) of the sample in the UV region almost equal to zero.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

577-580

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Debnath, M.R. Islam, and M.S.R Khan: Bull. Mater. Sci. Vol. 30 (2007), p.315

Google Scholar

[2] K.S. Lin and S. Chowdhury: Int. J. Mol. Sci. Vol. 11 (2010), p.3226

Google Scholar

[3] Y.H. Dong, Q.N. Zhao, S. Wu, X.Q. Lu: J. Rare Earths Vol. 28 (2010), p.446

Google Scholar

[4] H. Takamura, J. Kobayashi, N. Takahashi, M. Okada: J. Electroceram. Vol. 22 (2009), p.24

Google Scholar

[5] L. Feng D.T. Hoang, C.K. Tsung, W.Y. Huang, S.H.Y. Lo, J.B. Wood, H.T. Wang, J.Y. Tang, and P.D. Yang. Nano Res. Vol. 4 (2011), p.61

Google Scholar

[6] A. Verma, N. Karar, A.K. Bakhshi, H. Chander, S.M. Shivaprasad, and S.A. Agnihotry: J. Nanoparticle Res. Vol. 9 (2007), p.317

Google Scholar

[7] P. Jasinski, T. Suzuki, and H.U. Anderson: Sens. Actuators B Vol. 95 (2003), p.73

Google Scholar

[8] D.E. Zhang, Q. Xie, X.B. Zhang, S.Z. Li, G.Q. Han, A.L. Ying, Z.W. Tong: Micro & Nano Lett. Vol. 5 (2010), p.58

Google Scholar

[9] C. Ho, J.C. Yu, T. Kwong, A.C. Mak, and S. Lai: Chem Mater. Vol. 17 (2005), p.4514

Google Scholar

[10] H.X Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, and C.H. Yan: J. Phys. Chem. B Vol. 109 (2005), p.24380

Google Scholar

[11] A. Vantomme, Z.Y. Yuan, G.H. Du, B.L. Su: Langmuir Vol. 21 (2005), p.1132

Google Scholar

[12] B. Yan and H.X. Zhu: J. Nanopart Res. Vol. 10 (2008), p.1279

Google Scholar

[13] W.J. Shan, X.W. Dong, N. Ma, S.Y. Yao, Z.C. Feng: Catal. Lett. Vol. 131 (2009), p.350

Google Scholar

[14] L. González-Rovira, J.M. Sánchez-Amaya, M. López-Haro, E.D. Rio, A.B. Hungría, P. Midgley, J.J. Calvino, S. Bernal and F. J. Botana: Nano. Lett. Vol. 9 (2009), p.1395

DOI: 10.1021/nl803047b

Google Scholar

[15] W. Duan, A.J. Xie, Y.H. Shen, X.F. Wang, F. Wang, Y. Zhang, J.L. Li: Ind. Eng. Chem. Res. Vol. 50 (2011), p.4441

Google Scholar