Spin-Glass Behavior and the Magnetic Relaxation Effects in Nd0.90Sr0.10CoO3

Article Preview

Abstract:

The magnetization, ac susceptibility and magnetic relaxation of Nd0.90Sr0.10CoO3 polycrystalline sample were systematically investigated in this paper. The experimental studies of susceptibility and magnetic relaxation evidence the existence of a low-temperature spin-glass. A dynamic analysis of ac susceptibility implies a spin-glass transition temperature TSG =12.17 K and the dynamical exponent zv=8. Moreover, low-temperature zero-field cooling and field cooling magnetic relaxation show perfectly mirror symmetry, and field cooling processes relaxation obeys a stretched exponential form. Therefore, our study confirms that the phase separation in Nd0.90Sr0.10CoO3 originates from both the ferromagnetic clusters interaction and the spin glasslike phase at low temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

680-683

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Paraskevopoulos, J.Hemberger, A.Krimmel, et al: Phys. Rev. B. Vol. 63 (2001), pp.224416-1~5

Google Scholar

[2] A.Krimmel, M.Reehuis, M.Paraskevopoulos,et al: Phys. Rev.B Vol. 64 (2001), pp.224404-1~3

Google Scholar

[3] K.Yoshii, H.Abe, A.Nakamura: Mater. Res. Bull. Vol. 36(2001), p.1447~1454

Google Scholar

[4] Douglas D. Stauffer and C.Leighton: Phys. Rev. B. Vol. 70 (2004), pp.214414-2~6

Google Scholar

[5] D.N.H. Nam, K.Jonason, P.Nordblad, et al: Phys.Rev.B. Vol. 59(1999), p.4189~4191

Google Scholar

[6] J.Wu and Leighton: Phys. Rev. B. Vol. 67 (2003), pp.174408-1~10

Google Scholar

[7] M.Kriener, C.Zobel, A.Reichl, et al: Phys. Rev. B Vol.69 (2004) pp.094417-2~5

Google Scholar

[8] D.N.H. Nam, R.Mathieu, P.Nordblod, et al: Phys.Rev.B Vol.62 (2000) p.8989~8991

Google Scholar

[9] Señarís-Rodríguez MA, Goodenough JB: J. Solid State Chem. Vol. 118 (1995), p.323~ 325

Google Scholar

[10] Yan-kun Tang, Yong Sun, and Zhao-hua Cheng: Phys. Rev. B. Vol. 73 (2006), pp.174419-1~2

Google Scholar

[11] V.P.S. Awana, J.Nakamura, M.Karppinen, et al: J.Magn. Magn. Mater. Vol. 7(2002). p.250~251

Google Scholar

[12] A.P. Sazonov, I.O. Troyanchuk, V.V. Sikolenko, et al: Crystal J. Phys: Condens. Matter Vol.17 (2005) p.4181~4195.

Google Scholar

[13] Y.B.Li, Y.Q. Zhang, W.F.Li, et al: Phys.Rev.B Vol.73(2006), p.212403.

Google Scholar

[14] Shengli Huang, Keqing Ruan, Zhangming Lv, et al: Phys.Rev.B Vol.73(2006), p.094431.

Google Scholar

[15] P.Mandal, P.Choudhury, S.K. Biswas, et al: Phys.Rev.B Vol. 70(2004), p.104407.

Google Scholar

[16] X.G. Luo, H.Li, X.H. Chen, et al: Chem. Mater. Vol. 18(2006), p.1029~1035

Google Scholar

[17] Asish K.Kundu, P.Nordblad, C.N.R. Rao: J.Solid State Chem Vol.179(2006), p.923~927.

Google Scholar

[18] G.C.DeFotis, G.S. Coker, J.W. Jones, et al: Phys.Rev.B Vol.58(1998), p.12178.

Google Scholar

[19] K.Yamaura, Q.Huang, and R.J. Cava: J. Solid State Chem. Vol 146(1999), p.277.

Google Scholar

[20] Asish K.Kundu, P.Nordblad, C.N.R. Rao. Phys.Rev.B Vol 179(2006), p.923~927.

Google Scholar

[21] K.Yoshii, H.Abe. Phys.Rev.B Vol 67(2003), p.094408.

Google Scholar