Deoxycholate-Assisted Photochirogensis of Silver Nanoparticles

Article Preview

Abstract:

The Silver nanoparticles with chiroptical feature have been prepared via chiral transfer through supramolecular interaction during the photoirradiation of silver salt with the assistance of chiral environment provided by sodium deoxycholate at pH 9.7. The pH value plays a significant role for the formation of optically active silver nanoparticles, which may be due to the changes in distance and conformation caused by the addition of hydroxy anion. The as-synthesized silver nanoparticles exhibit the typical surface plasmon absorption, and most importantly, the positive circular dichroism signal in CD spectrum. This finding may be fundamentally important, on the one hand, in term of the fact that chiral photochemistry is extendable to the hot field of inorganic nanomaterials. On the other hand, the as-prepared chiral silver nanoparticles may find their application in chiral opto-electronic switches, the catalysts for asymmetric organic synthesis, or the host for chiral organic photochemistry.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

684-688

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Inoue, V.Ramamurthy: Chiral Photochemistry, Marcel Dekker, New York, (2004)

Google Scholar

[2] Y. Inoue: Nature, Vol. 436 (2005), p.1099

Google Scholar

[3] Y. Inoue, T. Wada, N. Sugahara, K. Yamamoto, K. Kimura, L. Tong, X. Gao, Z. Hou, Y. Liu: J. Org. Chem. Vol. 65 (2000), p.8041.

Google Scholar

[4] Y. Inoue, N. Yamasaki, T.Yokoyama, A. Tai: J. Org. Chem. Vol. 57 (1992), p.1332.

Google Scholar

[5] Y. Inoue: Chem. Rev. Vol. 92 (1992), p.741

Google Scholar

[6] T. Wada, N. Sugahara, M. Kawano, Y. Inoue: Chem. Lett. Vol. 29 (2000), p.1174.

Google Scholar

[7] T. Wada, M. Nishijima, T. Fujisawa, N. Sugahara, T. Mori, A. Nakamura, Y. Inoue: J. Am. Chem. Soc., Vol. 125 (2003), p.7492

DOI: 10.1021/ja034641g

Google Scholar

[8] C.Yang, T. Mori, Y. Origane, Y. H. Ko, N. Selvapalam, K. Kim, Y. Inoue: J. Am. Chem. Soc., Vol. 130 (2008), p.8574

Google Scholar

[9] G. Fukuhara, C. Chiappe, A. Mele, B. Melai, F. Bellina, Y. Inoue: Chem. Commun. Vol. 46 (2010), p.3472

Google Scholar

[10] G. Schemer, O. Krichevski, G. Markovich, T. Molotsky, I. Lubitz, A. B. Kotlyar: J. Am. Chem. Soc. Vol. 128 (2006), p.11006

DOI: 10.1021/ja063702i

Google Scholar

[11] T. Molotsky, T. Tamarin, A.B. Moshe, G. Markovich, A.B. Kotlyar: J. Phys. Chem. Vol. 114 (2010), p.15951.

DOI: 10.1021/jp911968x

Google Scholar

[12] J.T. Petty, J. Zheng, N.V. Hud, R.M. Dickson: J. Am. Chem. Soc. Vol. 126 (2004), p.5207

Google Scholar

[13] T. G. Schaaff, R. L. Whetten: J. Phys. Chem. B Vol. 104 (2000), p.2630.

Google Scholar

[14] C. Gautier, T.Burgi: ChemPhysChem, Vol. 10 (2009), p.483

Google Scholar