Actinozoan-Like Carbon Materials Prepared via a Solvothermal Route

Article Preview

Abstract:

Actinozoan-like carbon materials with high yields have been successfully synthesized via a solvothermal route in a stainless steel autoclave. In this process, polyethylene glycol, magnesium acetate and n-butanol were used as starting materials. The resulting products were characterized with X-ray powder diffractometer (XRD), energy-dispersive X-ray spectra (EDX), Raman spectroscopy and scanning electron microscopy (SEM). The actinozoan-like carbon materials have diameters ranging from 100 nm to 120 nm, and lengths ranging from several microns to dozens of microns. The optimal reaction conditions to obtain actinozoan-like carbon materials are 500 °C and 12h.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

983-986

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature Vol. 393 (1998), p.346.

Google Scholar

[2] T. Kyotani, Carbon Vol. 38 (2000), p.269.

Google Scholar

[3] X.D. Wu, Z.X. Wang, L.Q. Chen, X.J. Huang, Surf. Coat. Tech. Vol. 186 (2004), p.412.

Google Scholar

[4] Y. Saito, T. Matsumoto, Nature Vol. 392 (1998), p.237.

Google Scholar

[5] D. Ugarte, Nature Vol. 359 (1992), p.707.

Google Scholar

[6] M. Choucair, J.A. Stride, Carbon Vol. 50 (2012), p.1109.

Google Scholar

[7] A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, Nature Vol. 388 (1997), p.451.

DOI: 10.1038/41284

Google Scholar

[8] P.M. Ajayan, J.M. Nugent, R.W. Siegel, B. Wei, Nature Vol. 404 (2000), p.243.

Google Scholar

[9] Z. Yan, Z. Hu, C. Chen, H. Meng, P.K. Shen, H. Ji, J. Power Sources Vol.195(2010), p.7146.

Google Scholar

[10] X.Q. Chen, S. Motojiam, J. Mater. Sci. Vol. 34 (1999), p.3581.

Google Scholar

[11] S. Zhao, X.Y. Li, C.Y. Wang, M.M. Chen, Mater. Lett. Vol.70 (2012), p.54.

Google Scholar

[12] T. Luo, X.G. Yang, J.W. Liu, W.C. Yu, Y.T. Qian, Chem. Lett. Vol. 34 (2005), p.168.

Google Scholar

[13] T. Luo, J.W. Liu, Carbon Vol. 43 (2005), p.755.

Google Scholar

[14] J.W. Liu, W.J. Lin, X.Y. Chen, S.Y. Zhang, F.Q. Li, Y.T. Qian, Carbon Vol. 42 (2004), p.669.

Google Scholar

[15] Y. Xiao, Y.L. Liu, L.Q. Chen, D.S. Yuan, J.X. Zhang, Y.L. Gu, Carbon Vol.44 (2006), p.1589.

Google Scholar

[16] Y. Xiao, Y.L. Liu, Y.Z. Mi, D.S. Yuan, J.X. Zhang, Chem. Lett. Vol. 34(2005), p.1422.

Google Scholar

[17] Y.Z. Mi, Y.L. Liu, D.S. Yuan, J.X. Zhang, Chem. Lett. Vol. 34 (2005),p.846.

Google Scholar

[18] Y.Z. Mi, Y.L. Liu. New Carbon Mater. Vol. 24 (2009), p.375.

Google Scholar

[19] Y.Z. Mi, W.B. Hu, YM Dan, Mater. lett. Vol. 62 (2008), p.1194.

Google Scholar

[20] Y.Z. Mi, W.B. Hu, Y.M. Dan, Mater. Res. Bull. Vol. 44 (2009), p.952.

Google Scholar

[21] Y.Z. Mi, Y.M. Dan, W.B. Hu, Chin. J. Inorg. Chem.(In chinese) Vol. 23 (2007), p.1833.

Google Scholar

[22] M.W. Shao, Q. Li, J. Wu, Carbon Vol. 40 (2002), p.2961.

Google Scholar