Levitated Drop Microreactors for Biochemical Kinetics

Article Preview

Abstract:

Ultrasonically-levitated drops have been widely studied for materials processing and for sample preparation for chemical analysis. We report on the development of such drops for study of kinetics of enzyme-catalyzed reactions and other chemical processes. We review how to simply and reliably levitate drops, discuss why such drops are desirable for studying biochemical reactions, especially those generating or consuming free radicals, and report progress towards routine kinetics measurements in microliter drops.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

395-400

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. L. Lefkowitz, J. Mone, and S. S. Lefkowitz, Myeloperoxidase: the Good, the Bad, and the Ugly, Curr. Immunol. Rev., 6 (2010) 123-129.

DOI: 10.2174/157339510791111691

Google Scholar

[2] B. -H. Shao, M. N. Oda, J. F. Oram, and J. W. Heinecke, Myeloperoxidase: An Oxidative Pathway for Generating Dysfunctional High-Density Lipoprotein , Chem. Res. Toxicol., 23 (2010) 447-454.

DOI: 10.1021/tx9003775

Google Scholar

[3] M. J. Davies, Myeloperoxidase-derived Oxidation: Mechanisms of Biological Damage and Its Prevention, J. Clin. Biochem. Nutr., 48 (2011) 8-19.

DOI: 10.3164/jcbn.11-006fr

Google Scholar

[4] Z. Prokopowicz, J. Marcinkiewicz, D. R. Katz, and B. M. Chain, Neutrophil Myeloperoxidase: Soldier and Statesman, Arch. Immunol. Ther. Exp., 60 (2012) 43-54.

DOI: 10.1007/s00005-011-0156-8

Google Scholar

[5] C. R. Field and A. Scheeline, Design and Implementation of an Efficient Acoustically Levitated Drop Reactor for in Stillo Measurements, Rev. Sci. Instrum., 78 (2007) 125102.

DOI: 10.1063/1.2818798

Google Scholar

[6] C. R. Field, Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates, Ph.D. Ph.D., Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, (2009).

Google Scholar

[7] E. H. Trinh and C. J. Hsu, Equilibrium Shapes of Acoustically Levitated Drops, J. Acoust. Soc. Am., 79 (1986) 1335-1338.

DOI: 10.1121/1.393660

Google Scholar

[8] E. H. Trinh and J. L. Robey, Experimental Study of Streaming Flows Associated with Ultrasonic Levitators, Phys. Fluids, 6 (1994) 3567-3579.

DOI: 10.1063/1.868415

Google Scholar

[9] E. H. Trinh, R. G. Holt, and D. B. Thiessen , The Dynamics of Ultrasonically Levitated Drops in an Electric Field, Phys. Fluids, 8 (1996) 43-61.

DOI: 10.1063/1.868813

Google Scholar

[10] H. Zhao, S. S. Sadhal, and E. H. Trinh , Internal Circulation in a Drop in an Acoustic Field, J. Acoust. Soc. Am., 106 (1999) 3289-3295.

DOI: 10.1121/1.428182

Google Scholar

[11] W. J. Xie and B. Wei, Sound Field Inside Acoustically Levitated Spherical Drop, Appl. Phys. Lett., 90 (2007) 204104.

DOI: 10.1063/1.2741051

Google Scholar

[12] C. L. Shen, W. J. Xie, and B. Wei, Parametrically Excited Sectorial Oscillation of Liquid Drops Floating in Ultrasound, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys., 81 (2010) 046305.

DOI: 10.1103/physreve.81.046305

Google Scholar

[13] C. L. Shen, W. J. Xie, Z. L. Yan, and B. Wei, Internal Flow of Acoustically Levitated Drops Undergoing Sectorial Oscillations , Phys. Lett. A, 374 (2010) 4045-4048.

DOI: 10.1016/j.physleta.2010.07.071

Google Scholar

[14] W. -C. Choi, E. Chainani, K. T. Ngo, O. Masha, and A. Scheeline, Convective Mixing in Ultrasonically-levitated Drops, unpublished.

DOI: 10.1021/ac403968d

Google Scholar

[15] Z. N. Pierre, C. R. Field, and A. Scheelinel, Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor, Anal. Chem., 81 (2009) 8496-8502.

DOI: 10.1021/ac901400y

Google Scholar

[16] H. Liu and P. K. Dasgupta, A Liquid Drop: A Windowless Optical Cell and a Reactor Without Walls for Flow Injection Analysis, Anal. Chim. Acta 326 (1996) 13-22.

DOI: 10.1016/0003-2670(96)00040-2

Google Scholar

[17] H. Liu and P. K. Dasgupta, A Liquid Drop: What Is It Good For?, Microchem. J., 57 (1997) 127-136.

Google Scholar

[18] T. Laurell, et al., System for Performing Assays on a Levitated Droplet, World Intell. Prop. Org. Patent Patent WO 99/44746 (1999).

Google Scholar

[19] S. Santesson, et al., Airborne Cell Analysis, Anal. Chem., 72 (2000) 3412-3418.

Google Scholar

[20] S. Santesson and S. Nilsson, Airborne Chemistry: Acoustic Levitation in Chemical Analysis, Anal. Bioanal. Chem., 378 (2004) 1704-1709.

DOI: 10.1007/s00216-003-2403-2

Google Scholar

[21] M. S. Westphall, K. Jorabchi and L. M. Smith, Mass Spectrometry of Acoustically Levitated Drops, Anal. Chem., 80 (2008) 5847-5853.

DOI: 10.1021/ac800317f

Google Scholar

[22] A. R. Wheeler, H. Moon, C. J. Kim, J. A. Loo, an R. L. Garrell, Electrowetting-Based Microfluidics for Analysis of Peptides and Proteins by Matrix-Assisted Laser Depsorption/Ionization Mass Spectrometry, Anal. Chem., 76 (2004) 4833-4939.

DOI: 10.1021/ac0498112

Google Scholar

[23] H. Yang, V. N. Luk, M. Abelgawad, I. Barbulovic-Nad, and A. R. Wheeler, A World-to-Chip Interface for Digital Microfluidics, Anal. Chem., 81 (2009) 1061-1067.

DOI: 10.1021/ac802154h

Google Scholar

[24] D. D. Weis and J. D. Nardozzi, Enzyme Kinetics in Acoustically Levitated Droplets of Supercooled Water: A Novel Approach to Cryoenzymology, Anal. Chem., 77 (2005) 2558-2563.

DOI: 10.1021/ac048486f

Google Scholar

[25] J. Südi, Macroscopic Rate Constants Involved in the Formation and Interconversion of the Two Central Enzyme–Substrate Complexes of the Lactate Dehydrogenase Turnover, Biophys. J., 139 (1974) 261-271.

DOI: 10.1042/bj1390261

Google Scholar

[26] I. Sliskovic, I. Abulhamid, M. Sharma, and H. M. Abu-Soud, Analysis of the Mechanism by Which Tryptophan Analogs Inhibit Human Myeloperoxidase, Free Rad. Biol. Med., 47 (2009) 1005-1013.

DOI: 10.1016/j.freeradbiomed.2009.07.007

Google Scholar

[27] P. Sen, S. Yamaguchi, and T. Tahara, New Insight into the Surface Denaturation of Proteins: Electronic Sum Frequency Generation Study of Cytochrome C at Water Interfaces, J. Phys. Chem. B, 112 (2008) 13473-13475.

DOI: 10.1021/jp8061288

Google Scholar