[1]
D. L. Lefkowitz, J. Mone, and S. S. Lefkowitz, Myeloperoxidase: the Good, the Bad, and the Ugly, Curr. Immunol. Rev., 6 (2010) 123-129.
DOI: 10.2174/157339510791111691
Google Scholar
[2]
B. -H. Shao, M. N. Oda, J. F. Oram, and J. W. Heinecke, Myeloperoxidase: An Oxidative Pathway for Generating Dysfunctional High-Density Lipoprotein , Chem. Res. Toxicol., 23 (2010) 447-454.
DOI: 10.1021/tx9003775
Google Scholar
[3]
M. J. Davies, Myeloperoxidase-derived Oxidation: Mechanisms of Biological Damage and Its Prevention, J. Clin. Biochem. Nutr., 48 (2011) 8-19.
DOI: 10.3164/jcbn.11-006fr
Google Scholar
[4]
Z. Prokopowicz, J. Marcinkiewicz, D. R. Katz, and B. M. Chain, Neutrophil Myeloperoxidase: Soldier and Statesman, Arch. Immunol. Ther. Exp., 60 (2012) 43-54.
DOI: 10.1007/s00005-011-0156-8
Google Scholar
[5]
C. R. Field and A. Scheeline, Design and Implementation of an Efficient Acoustically Levitated Drop Reactor for in Stillo Measurements, Rev. Sci. Instrum., 78 (2007) 125102.
DOI: 10.1063/1.2818798
Google Scholar
[6]
C. R. Field, Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates, Ph.D. Ph.D., Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, (2009).
Google Scholar
[7]
E. H. Trinh and C. J. Hsu, Equilibrium Shapes of Acoustically Levitated Drops, J. Acoust. Soc. Am., 79 (1986) 1335-1338.
DOI: 10.1121/1.393660
Google Scholar
[8]
E. H. Trinh and J. L. Robey, Experimental Study of Streaming Flows Associated with Ultrasonic Levitators, Phys. Fluids, 6 (1994) 3567-3579.
DOI: 10.1063/1.868415
Google Scholar
[9]
E. H. Trinh, R. G. Holt, and D. B. Thiessen , The Dynamics of Ultrasonically Levitated Drops in an Electric Field, Phys. Fluids, 8 (1996) 43-61.
DOI: 10.1063/1.868813
Google Scholar
[10]
H. Zhao, S. S. Sadhal, and E. H. Trinh , Internal Circulation in a Drop in an Acoustic Field, J. Acoust. Soc. Am., 106 (1999) 3289-3295.
DOI: 10.1121/1.428182
Google Scholar
[11]
W. J. Xie and B. Wei, Sound Field Inside Acoustically Levitated Spherical Drop, Appl. Phys. Lett., 90 (2007) 204104.
DOI: 10.1063/1.2741051
Google Scholar
[12]
C. L. Shen, W. J. Xie, and B. Wei, Parametrically Excited Sectorial Oscillation of Liquid Drops Floating in Ultrasound, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys., 81 (2010) 046305.
DOI: 10.1103/physreve.81.046305
Google Scholar
[13]
C. L. Shen, W. J. Xie, Z. L. Yan, and B. Wei, Internal Flow of Acoustically Levitated Drops Undergoing Sectorial Oscillations , Phys. Lett. A, 374 (2010) 4045-4048.
DOI: 10.1016/j.physleta.2010.07.071
Google Scholar
[14]
W. -C. Choi, E. Chainani, K. T. Ngo, O. Masha, and A. Scheeline, Convective Mixing in Ultrasonically-levitated Drops, unpublished.
DOI: 10.1021/ac403968d
Google Scholar
[15]
Z. N. Pierre, C. R. Field, and A. Scheelinel, Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor, Anal. Chem., 81 (2009) 8496-8502.
DOI: 10.1021/ac901400y
Google Scholar
[16]
H. Liu and P. K. Dasgupta, A Liquid Drop: A Windowless Optical Cell and a Reactor Without Walls for Flow Injection Analysis, Anal. Chim. Acta 326 (1996) 13-22.
DOI: 10.1016/0003-2670(96)00040-2
Google Scholar
[17]
H. Liu and P. K. Dasgupta, A Liquid Drop: What Is It Good For?, Microchem. J., 57 (1997) 127-136.
Google Scholar
[18]
T. Laurell, et al., System for Performing Assays on a Levitated Droplet, World Intell. Prop. Org. Patent Patent WO 99/44746 (1999).
Google Scholar
[19]
S. Santesson, et al., Airborne Cell Analysis, Anal. Chem., 72 (2000) 3412-3418.
Google Scholar
[20]
S. Santesson and S. Nilsson, Airborne Chemistry: Acoustic Levitation in Chemical Analysis, Anal. Bioanal. Chem., 378 (2004) 1704-1709.
DOI: 10.1007/s00216-003-2403-2
Google Scholar
[21]
M. S. Westphall, K. Jorabchi and L. M. Smith, Mass Spectrometry of Acoustically Levitated Drops, Anal. Chem., 80 (2008) 5847-5853.
DOI: 10.1021/ac800317f
Google Scholar
[22]
A. R. Wheeler, H. Moon, C. J. Kim, J. A. Loo, an R. L. Garrell, Electrowetting-Based Microfluidics for Analysis of Peptides and Proteins by Matrix-Assisted Laser Depsorption/Ionization Mass Spectrometry, Anal. Chem., 76 (2004) 4833-4939.
DOI: 10.1021/ac0498112
Google Scholar
[23]
H. Yang, V. N. Luk, M. Abelgawad, I. Barbulovic-Nad, and A. R. Wheeler, A World-to-Chip Interface for Digital Microfluidics, Anal. Chem., 81 (2009) 1061-1067.
DOI: 10.1021/ac802154h
Google Scholar
[24]
D. D. Weis and J. D. Nardozzi, Enzyme Kinetics in Acoustically Levitated Droplets of Supercooled Water: A Novel Approach to Cryoenzymology, Anal. Chem., 77 (2005) 2558-2563.
DOI: 10.1021/ac048486f
Google Scholar
[25]
J. Südi, Macroscopic Rate Constants Involved in the Formation and Interconversion of the Two Central Enzyme–Substrate Complexes of the Lactate Dehydrogenase Turnover, Biophys. J., 139 (1974) 261-271.
DOI: 10.1042/bj1390261
Google Scholar
[26]
I. Sliskovic, I. Abulhamid, M. Sharma, and H. M. Abu-Soud, Analysis of the Mechanism by Which Tryptophan Analogs Inhibit Human Myeloperoxidase, Free Rad. Biol. Med., 47 (2009) 1005-1013.
DOI: 10.1016/j.freeradbiomed.2009.07.007
Google Scholar
[27]
P. Sen, S. Yamaguchi, and T. Tahara, New Insight into the Surface Denaturation of Proteins: Electronic Sum Frequency Generation Study of Cytochrome C at Water Interfaces, J. Phys. Chem. B, 112 (2008) 13473-13475.
DOI: 10.1021/jp8061288
Google Scholar