The Reduction Mechanism of Biomass Roasting of Goethite Ores

Article Preview

Abstract:

Utilization of biomass in iron ores sintering process as heating agent and reducing agent contributes to energy conservation and emission reduction, and can partially replace for coal and coke. Different biomass powders (pine sawdust, corn straw, and rice shell) were mixed together with goethite ores for roasting process to investigate the mechanism of reduction roasting. The thermal behavior, phase structure and magnetic properties have been thoroughly discussed. The results in this work provide a fundamental understanding for the direct reduction of iron ores separation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

441-446

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. S. Liu, V. Strezov, J.A. Lucas, L.J. Wibberley, Thermal investigations of direct iron ore reduction with coal, Thermochimica Acta. 410 (2004) 133-140.

DOI: 10.1016/s0040-6031(03)00398-8

Google Scholar

[2] S. Kudo, K. Sugiyama, K. Norinaga, C.Z. Li, T. Akiyama, J.I. Hayashi, Coproduction of clean syngas and iron from woody biomass and natural goethite ore, Fuel. in press.

DOI: 10.1016/j.fuel.2011.06.074

Google Scholar

[3] Y. Hata, H. Purwanto, S. Hosokai, J. I. Hayashi, T. Akiyama, Biotar Ironmaking Using Wooden Biomass and Nanoporous Iron Ore, Energy & Fuels. 23 (2009) 1128-1131.

DOI: 10.1021/ef800967h

Google Scholar

[4] V. Strezov, T.J. Evans, V. Zymla, L. Strezov, Structural deterioration of iron ore particles during thermal processing, Int. J. Miner. Process. 100 (2011) 27-32.

DOI: 10.1016/j.minpro.2011.04.005

Google Scholar

[5] Y.B. Wang, G.C. Zhu, R.A. Chi, Y.N. Zhao, Z. Cheng, An investigation on reduction and magnetization of limonite using biomass, The Chinese J. Process Engineering. 9 (2009) 508-513.

Google Scholar

[6] S. Luo, C. Yi, Y. Zhou, Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas, Renewable Energy. 36 (2011) 3332-3336.

DOI: 10.1016/j.renene.2011.05.006

Google Scholar

[7] K. Przepiera, A. Przepiera, Kinetics of thermal transformations of precipitated magnetite and goethite, J. Thermal Analysis and Calorimetry. 65 (2001) 497-503.

DOI: 10.1023/a:1012441421955

Google Scholar

[8] R. M. Morcos, A. Navrotsky, Iron ore sinting-characterization by calorimetry and thermal analysis, J. Thermal Analysis and Calorimetry. 96 (2009) 353-361.

DOI: 10.1007/s10973-008-8783-y

Google Scholar

[9] F.O. Connor, W.H. Cheung, M. Valix, Reduction roasting of limonite ores: effect of dehydroxylation, Int. J. Miner. Process. 80 (2006) 88-99.

DOI: 10.1016/j.minpro.2004.05.003

Google Scholar

[10] U. Schwertmann, M. Latham, Properties of iron oxides in some new calendonian oxisols, Geoderma. 39 (1986) 105-123.

DOI: 10.1016/0016-7061(86)90070-4

Google Scholar

[11] Ö. Özdemir, D.J. Dunlop, Intermediate magnetite formation during dehydration of goethite Earth and Planetary Science Letters. 177(2000) 59-67.

DOI: 10.1016/s0012-821x(00)00032-7

Google Scholar

[12] Ö. Özdemir, D. J. Dunlop, Thermoremanence and Néel temperature of goethite. Geophys, Res. Lett. 23 (1996) 921-924.

DOI: 10.1029/96gl00904

Google Scholar

[13] D.E. France, F. Oldfield, Identifying goethite and hematite from rock magnetic measurements of soils and sediments, J. Geophys. Res. 105 (2000) 2781-2795.

DOI: 10.1029/1999jb900304

Google Scholar

[14] E. Wolska, U. Schwertmann, Nonstoichiometric structures during dehydroxylation of goethite. Zeitschrift für Kristallographie, 189 (1989) 223-237.

DOI: 10.1524/zkri.1989.189.3-4.223

Google Scholar

[15] Q. Liu, V. Barron, J. Torrent, H. Qin, Y. Yu, The magnetism of micro-sized hematite explained, Phys. Earth & Planetary Interiors. 183 (2010) 387-397.

DOI: 10.1016/j.pepi.2010.08.008

Google Scholar

[16] K. Higuchi, R.H. Heerema, Influence of sintering conditions on the reduction behaviour of pure hematite compacts, Miner. Engineering. 16 (2003) 463-477.

DOI: 10.1016/s0892-6875(02)00180-2

Google Scholar