[1]
G. S. Liu, V. Strezov, J.A. Lucas, L.J. Wibberley, Thermal investigations of direct iron ore reduction with coal, Thermochimica Acta. 410 (2004) 133-140.
DOI: 10.1016/s0040-6031(03)00398-8
Google Scholar
[2]
S. Kudo, K. Sugiyama, K. Norinaga, C.Z. Li, T. Akiyama, J.I. Hayashi, Coproduction of clean syngas and iron from woody biomass and natural goethite ore, Fuel. in press.
DOI: 10.1016/j.fuel.2011.06.074
Google Scholar
[3]
Y. Hata, H. Purwanto, S. Hosokai, J. I. Hayashi, T. Akiyama, Biotar Ironmaking Using Wooden Biomass and Nanoporous Iron Ore, Energy & Fuels. 23 (2009) 1128-1131.
DOI: 10.1021/ef800967h
Google Scholar
[4]
V. Strezov, T.J. Evans, V. Zymla, L. Strezov, Structural deterioration of iron ore particles during thermal processing, Int. J. Miner. Process. 100 (2011) 27-32.
DOI: 10.1016/j.minpro.2011.04.005
Google Scholar
[5]
Y.B. Wang, G.C. Zhu, R.A. Chi, Y.N. Zhao, Z. Cheng, An investigation on reduction and magnetization of limonite using biomass, The Chinese J. Process Engineering. 9 (2009) 508-513.
Google Scholar
[6]
S. Luo, C. Yi, Y. Zhou, Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas, Renewable Energy. 36 (2011) 3332-3336.
DOI: 10.1016/j.renene.2011.05.006
Google Scholar
[7]
K. Przepiera, A. Przepiera, Kinetics of thermal transformations of precipitated magnetite and goethite, J. Thermal Analysis and Calorimetry. 65 (2001) 497-503.
DOI: 10.1023/a:1012441421955
Google Scholar
[8]
R. M. Morcos, A. Navrotsky, Iron ore sinting-characterization by calorimetry and thermal analysis, J. Thermal Analysis and Calorimetry. 96 (2009) 353-361.
DOI: 10.1007/s10973-008-8783-y
Google Scholar
[9]
F.O. Connor, W.H. Cheung, M. Valix, Reduction roasting of limonite ores: effect of dehydroxylation, Int. J. Miner. Process. 80 (2006) 88-99.
DOI: 10.1016/j.minpro.2004.05.003
Google Scholar
[10]
U. Schwertmann, M. Latham, Properties of iron oxides in some new calendonian oxisols, Geoderma. 39 (1986) 105-123.
DOI: 10.1016/0016-7061(86)90070-4
Google Scholar
[11]
Ö. Özdemir, D.J. Dunlop, Intermediate magnetite formation during dehydration of goethite Earth and Planetary Science Letters. 177(2000) 59-67.
DOI: 10.1016/s0012-821x(00)00032-7
Google Scholar
[12]
Ö. Özdemir, D. J. Dunlop, Thermoremanence and Néel temperature of goethite. Geophys, Res. Lett. 23 (1996) 921-924.
DOI: 10.1029/96gl00904
Google Scholar
[13]
D.E. France, F. Oldfield, Identifying goethite and hematite from rock magnetic measurements of soils and sediments, J. Geophys. Res. 105 (2000) 2781-2795.
DOI: 10.1029/1999jb900304
Google Scholar
[14]
E. Wolska, U. Schwertmann, Nonstoichiometric structures during dehydroxylation of goethite. Zeitschrift für Kristallographie, 189 (1989) 223-237.
DOI: 10.1524/zkri.1989.189.3-4.223
Google Scholar
[15]
Q. Liu, V. Barron, J. Torrent, H. Qin, Y. Yu, The magnetism of micro-sized hematite explained, Phys. Earth & Planetary Interiors. 183 (2010) 387-397.
DOI: 10.1016/j.pepi.2010.08.008
Google Scholar
[16]
K. Higuchi, R.H. Heerema, Influence of sintering conditions on the reduction behaviour of pure hematite compacts, Miner. Engineering. 16 (2003) 463-477.
DOI: 10.1016/s0892-6875(02)00180-2
Google Scholar