[1]
D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, et al, Pulsed Electron-Beam Technology for Surface Modification of Metallic Materials, J Vac Sci, Technol A. 16 (1998) 2480-2488.
DOI: 10.1116/1.581369
Google Scholar
[2]
J. X. Zou, T. Grosdidier, K. M. Zhang, C. Dong, and S. Weber, Rapid surface alloying by Ti of AISI 316L stainless steel using low energy high current pulsed electron beam, Eur Phy J A Phys. 43 (2008) 343-347.
DOI: 10.1051/epjap:2008083
Google Scholar
[3]
S. Z. Hao, X. D. Zhang, X. X. Mei, T. Grosdidier and C. Dong, Surface treatment of DZ4 directionally solidified nickel-based superalloy by high current pulsed electron beam, Mater Lett. 62 (2008) 414-417.
DOI: 10.1016/j.matlet.2007.05.068
Google Scholar
[4]
K. M. Zhang, J. X. Zou, T. Grosdidier, et al, Microstructures and phase formations in the surface layer of an AISI D2 steel treated with pulsed electron beam, J Alloys Com. 434 (2006) 707-709.
DOI: 10.1016/j.jallcom.2006.08.280
Google Scholar
[5]
Q. F. Guan, P. L. Yang, H. Zou, G. T. Zou, Nanocrystalline and amorphous surface structure of 0. 45%C steel produced by high current pulsed electron beam, J Mater Sci. 41 (2006) 479-483.
DOI: 10.1007/s10853-005-2463-0
Google Scholar
[6]
G. Li, E. Kikuchi, and M. Matsukata, ZSM-5 zeolite membranes prepared from a clear template-free solution, Microporous and Mesoporous Mater. 60 (2003) 225-235.
DOI: 10.1016/s1387-1811(03)00380-9
Google Scholar
[7]
M. W. Ackley, S.U.R. Saxena and H. Saxena, Application of natural zeolites in the purification and separation of gases, Microporous and Mesoporous Mater. 61(2003) 25-42.
DOI: 10.1016/s1387-1811(03)00353-6
Google Scholar
[8]
Y. Hasegawa, K. Sotowa, K. Kusakabe and S. Morooka, The influence of feed composition on CO oxidation using zeolite membranes loaded with metal catalysts, Microporous and Mesoporous Mater. 53 (2002) 339-346.
DOI: 10.1016/s1387-1811(02)00322-0
Google Scholar
[9]
B. Libby, W. Smyrl and E. Cussler, Polymer-zeolite composite membranes for direct methanol fuel cells, AIChe Journal. 49 (2003) 991-1001.
DOI: 10.1002/aic.690490416
Google Scholar
[10]
Q. F. Guan, L. Pan, H. Zou, et al, Stacking fault tetrahedra in aluminum, J Mater Sci. 39 (2004) 6349-6351.
Google Scholar
[11]
Q. F. Guan, D. Q. Cheng, et al, The vacancy defect clusters in polycrystalline pure aluminum induced by high-current pulsed electron beam, Acta Phy Sinica. 58, (2009) 4846-4852.
DOI: 10.7498/aps.58.4846
Google Scholar
[12]
Q. F. Guan, X. T. Wang, J. zhu and K. M. Chen, Fabrication of Micropore on AISI 304L Austenitic Stainless Steel Surface by High-current Pulsed Electron Beams Irradiation, ISIJ International. 49 (2009) 1449-1451.
DOI: 10.2355/isijinternational.49.1449
Google Scholar
[13]
Q. F. Guan, S. Q. Wang, X. H. Cui and Q. Y. Zhang, Formation of Stacking Fault Tetrahedra at Twin Lamellae in AISI 304 Austenitic Stainless Steel by High Current Pulse Electron Beam Irradiation, ISIJ International. 47 (2007) 1375-1377.
DOI: 10.2355/isijinternational.47.1375
Google Scholar
[14]
G. J. Hardy, M. L. Jenkins, Evidence for stacking-fault tetrahedra formed form self-interstitials in electron-irradiated silver, Philos. Mag. A. 52 (1985) 19-23.
DOI: 10.1080/01418618508237613
Google Scholar
[15]
W. Sigle, M. L. Jenkins, J. L. Hutchison, Determination of the nature of stacking-fault tetrahedra in electron-irradiated silver by high-resolution structural imaging, Philos. Mag. Lett. 57 (1988) 267-271.
DOI: 10.1080/09500838808203777
Google Scholar
[16]
A. Kubota, W. G. Wolfer, Transition pathways in the unfaulting of dislocation loops, Mater Sci Eng A. 400 (2005) 362-365.
DOI: 10.1016/j.msea.2005.01.080
Google Scholar
[17]
A. D. Pogrebnjak, A. D. Mikhaliov, N. A. Progrebnjak, et al, Evolution of vacancy defects and dislocations in surface layers of iron as a result of pulsed electron beam treatment, Phys. Lett. A. 241 (1998) 357-363.
DOI: 10.1016/s0375-9601(98)00131-5
Google Scholar