Rapid Fabrication and Characterization of Micropores on Pure Nickel Surface by High-Current Pulsed Electron Beams Irradiation

Article Preview

Abstract:

The Mechanism of Micropores Formed on the Surface of Polycrystalline Pure Nickel under High-current Pulsed Electron Beam (HCPEB) Irradiation Is Explained. it Is Discovered that Dispersed Micropores with Sizes of 0.1-2.0 µm on the Irradiated Surface of Pure Nickel Can Be Successfully Fabricated after HCPEB Irradiation. the Dominant Formation Mechanism of the Surface Micropores Should Be Attributed to the Formation of Supersaturation Vacancies within the near Surface during the HCPEB Irradiation and the Migration of Vacancies along Grain Boundaries and/or Dislocations towards the Irradiated Surface. it Is Expected that the HCPEB Technique Will Become a New Method for the Rapid Synthesis of Surface Porous Materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

931-936

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, et al, Pulsed Electron-Beam Technology for Surface Modification of Metallic Materials, J Vac Sci, Technol A. 16 (1998) 2480-2488.

DOI: 10.1116/1.581369

Google Scholar

[2] J. X. Zou, T. Grosdidier, K. M. Zhang, C. Dong, and S. Weber, Rapid surface alloying by Ti of AISI 316L stainless steel using low energy high current pulsed electron beam, Eur Phy J A Phys. 43 (2008) 343-347.

DOI: 10.1051/epjap:2008083

Google Scholar

[3] S. Z. Hao, X. D. Zhang, X. X. Mei, T. Grosdidier and C. Dong, Surface treatment of DZ4 directionally solidified nickel-based superalloy by high current pulsed electron beam, Mater Lett. 62 (2008) 414-417.

DOI: 10.1016/j.matlet.2007.05.068

Google Scholar

[4] K. M. Zhang, J. X. Zou, T. Grosdidier, et al, Microstructures and phase formations in the surface layer of an AISI D2 steel treated with pulsed electron beam, J Alloys Com. 434 (2006) 707-709.

DOI: 10.1016/j.jallcom.2006.08.280

Google Scholar

[5] Q. F. Guan, P. L. Yang, H. Zou, G. T. Zou, Nanocrystalline and amorphous surface structure of 0. 45%C steel produced by high current pulsed electron beam, J Mater Sci. 41 (2006) 479-483.

DOI: 10.1007/s10853-005-2463-0

Google Scholar

[6] G. Li, E. Kikuchi, and M. Matsukata, ZSM-5 zeolite membranes prepared from a clear template-free solution, Microporous and Mesoporous Mater. 60 (2003) 225-235.

DOI: 10.1016/s1387-1811(03)00380-9

Google Scholar

[7] M. W. Ackley, S.U.R. Saxena and H. Saxena, Application of natural zeolites in the purification and separation of gases, Microporous and Mesoporous Mater. 61(2003) 25-42.

DOI: 10.1016/s1387-1811(03)00353-6

Google Scholar

[8] Y. Hasegawa, K. Sotowa, K. Kusakabe and S. Morooka, The influence of feed composition on CO oxidation using zeolite membranes loaded with metal catalysts, Microporous and Mesoporous Mater. 53 (2002) 339-346.

DOI: 10.1016/s1387-1811(02)00322-0

Google Scholar

[9] B. Libby, W. Smyrl and E. Cussler, Polymer-zeolite composite membranes for direct methanol fuel cells, AIChe Journal. 49 (2003) 991-1001.

DOI: 10.1002/aic.690490416

Google Scholar

[10] Q. F. Guan, L. Pan, H. Zou, et al, Stacking fault tetrahedra in aluminum, J Mater Sci. 39 (2004) 6349-6351.

Google Scholar

[11] Q. F. Guan, D. Q. Cheng, et al, The vacancy defect clusters in polycrystalline pure aluminum induced by high-current pulsed electron beam, Acta Phy Sinica. 58, (2009) 4846-4852.

DOI: 10.7498/aps.58.4846

Google Scholar

[12] Q. F. Guan, X. T. Wang, J. zhu and K. M. Chen, Fabrication of Micropore on AISI 304L Austenitic Stainless Steel Surface by High-current Pulsed Electron Beams Irradiation, ISIJ International. 49 (2009) 1449-1451.

DOI: 10.2355/isijinternational.49.1449

Google Scholar

[13] Q. F. Guan, S. Q. Wang, X. H. Cui and Q. Y. Zhang, Formation of Stacking Fault Tetrahedra at Twin Lamellae in AISI 304 Austenitic Stainless Steel by High Current Pulse Electron Beam Irradiation, ISIJ International. 47 (2007) 1375-1377.

DOI: 10.2355/isijinternational.47.1375

Google Scholar

[14] G. J. Hardy, M. L. Jenkins, Evidence for stacking-fault tetrahedra formed form self-interstitials in electron-irradiated silver, Philos. Mag. A. 52 (1985) 19-23.

DOI: 10.1080/01418618508237613

Google Scholar

[15] W. Sigle, M. L. Jenkins, J. L. Hutchison, Determination of the nature of stacking-fault tetrahedra in electron-irradiated silver by high-resolution structural imaging, Philos. Mag. Lett. 57 (1988) 267-271.

DOI: 10.1080/09500838808203777

Google Scholar

[16] A. Kubota, W. G. Wolfer, Transition pathways in the unfaulting of dislocation loops, Mater Sci Eng A. 400 (2005) 362-365.

DOI: 10.1016/j.msea.2005.01.080

Google Scholar

[17] A. D. Pogrebnjak, A. D. Mikhaliov, N. A. Progrebnjak, et al, Evolution of vacancy defects and dislocations in surface layers of iron as a result of pulsed electron beam treatment, Phys. Lett. A. 241 (1998) 357-363.

DOI: 10.1016/s0375-9601(98)00131-5

Google Scholar