A Polycrystal Plasticity Model and its Application in Deep Drawing of a FCC Metal

Article Preview

Abstract:

This study developed a new polycrystal plasticity model by deducing a set of linear controlling equations with respect to the controlling equation of rate dependent crystal plasticity (RDCP). It was proved numerically efficient and stable by means of the comparison with experiment and an implicit model. The model was then applied to describe earing in deep drawing process. Remarkable effects of rate sensitivity coefficient of the material, drawing speed and dies clearance on earing were found.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

952-958

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.R. Kalidindi, L. Anand, An approximate procedure for predicting the evolution of crystallographic texture in bulk deformation processing of fcc metals, Int. J. Mech. Sci. 34 (1992) 309-329.

DOI: 10.1016/0020-7403(92)90038-i

Google Scholar

[2] A.M. Cuitiño, M. Ortiz, Computational modelling of single crystals, Modell. Simul. Mater. Sci. Eng. 1 (1992) 225-263.

Google Scholar

[3] G. Sarma, T. Zacharia, Integration algorithm for modeling the elasto-viscoplastic response of polycrystalline materials, J. Mech. Phys. Solids 47 (1999) 1219-1238.

DOI: 10.1016/s0022-5096(98)00105-7

Google Scholar

[4] R.D. McGinty, Crystallographic multiscale representation of polycrystalline inelasticity, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, (2001).

Google Scholar

[5] H.W. Li, H. Yang, Z.C. Sun, A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method, Int. J. Plasticity 24 (2008) 267-288.

DOI: 10.1016/j.ijplas.2007.03.014

Google Scholar

[6] J.L. Raphanel, G. Ravichandran, Y.M. Leroy, Three-dimensional rate-dependent crystal plasticity based on Runge-Kutta algorithms for update and consistent linearization, Int. J. Plasticity 41 (2004) 5995-6021.

DOI: 10.1016/j.ijsolstr.2004.05.027

Google Scholar

[7] D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta. Metall. 31 (1983) 1951-(1976).

DOI: 10.1016/0001-6160(83)90014-7

Google Scholar

[8] X. Ling, M. Horstemeyer, G. Potirniche, On the numerical implementation of 3D rate dependent single crystal plasticity formulations, Int. J. Numer. Meth. Eng. 63 (2005) 548-568.

DOI: 10.1002/nme.1289

Google Scholar

[9] S.N. Kuchnicki, A.M. Cuitiño, R.A. Radovitzky, Efficient and robust constitutive integrators for single-crystal plasticity modeling, Int. J. Plasticity 22 (2006) 1988-(2011).

DOI: 10.1016/j.ijplas.2006.02.008

Google Scholar

[10] S.N. Kuchnicki, R.A. Radovitzky, A.M. Cuitiño, An explicit formulation for multiscale modeling of bcc metals, Int. J. Plasticity 24 (2008) 2173-2191.

DOI: 10.1016/j.ijplas.2008.06.003

Google Scholar

[11] S. Balasubramanian, L. Anand, Polycrystalline plasticity: application to earing in cup drawing of Al2008-T4 sheet, Transactions of the ASME 65 (1998) 268-270.

DOI: 10.1115/1.2789037

Google Scholar

[12] M. Grujicic, S. Batchu, Crystal plasticity analysis of earing in deep-drawn OFHC copper cups, J. Mater. Sci. 37 (2002) 753-764.

Google Scholar

[13] Z. Zhao, W. Mao, F. Roters, D. Raabe, A texture optimization study for minimum earing in aluminum by use of a texture component crystal plasticity finite element method, Acta Mater. 52 (2004) 1003-1012.

DOI: 10.1016/j.actamat.2003.03.001

Google Scholar

[14] X.M. Zhang, Z.Y. Yao, D.G. Liu, M.A. Chen, Z.Y. Chen, FEM simulation of the earing of 3104 aluminum sheets, Rare Metal Mater. Eng. 34 (2005) 581-585.

Google Scholar