[1]
S.R. Kalidindi, L. Anand, An approximate procedure for predicting the evolution of crystallographic texture in bulk deformation processing of fcc metals, Int. J. Mech. Sci. 34 (1992) 309-329.
DOI: 10.1016/0020-7403(92)90038-i
Google Scholar
[2]
A.M. Cuitiño, M. Ortiz, Computational modelling of single crystals, Modell. Simul. Mater. Sci. Eng. 1 (1992) 225-263.
Google Scholar
[3]
G. Sarma, T. Zacharia, Integration algorithm for modeling the elasto-viscoplastic response of polycrystalline materials, J. Mech. Phys. Solids 47 (1999) 1219-1238.
DOI: 10.1016/s0022-5096(98)00105-7
Google Scholar
[4]
R.D. McGinty, Crystallographic multiscale representation of polycrystalline inelasticity, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, (2001).
Google Scholar
[5]
H.W. Li, H. Yang, Z.C. Sun, A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method, Int. J. Plasticity 24 (2008) 267-288.
DOI: 10.1016/j.ijplas.2007.03.014
Google Scholar
[6]
J.L. Raphanel, G. Ravichandran, Y.M. Leroy, Three-dimensional rate-dependent crystal plasticity based on Runge-Kutta algorithms for update and consistent linearization, Int. J. Plasticity 41 (2004) 5995-6021.
DOI: 10.1016/j.ijsolstr.2004.05.027
Google Scholar
[7]
D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta. Metall. 31 (1983) 1951-(1976).
DOI: 10.1016/0001-6160(83)90014-7
Google Scholar
[8]
X. Ling, M. Horstemeyer, G. Potirniche, On the numerical implementation of 3D rate dependent single crystal plasticity formulations, Int. J. Numer. Meth. Eng. 63 (2005) 548-568.
DOI: 10.1002/nme.1289
Google Scholar
[9]
S.N. Kuchnicki, A.M. Cuitiño, R.A. Radovitzky, Efficient and robust constitutive integrators for single-crystal plasticity modeling, Int. J. Plasticity 22 (2006) 1988-(2011).
DOI: 10.1016/j.ijplas.2006.02.008
Google Scholar
[10]
S.N. Kuchnicki, R.A. Radovitzky, A.M. Cuitiño, An explicit formulation for multiscale modeling of bcc metals, Int. J. Plasticity 24 (2008) 2173-2191.
DOI: 10.1016/j.ijplas.2008.06.003
Google Scholar
[11]
S. Balasubramanian, L. Anand, Polycrystalline plasticity: application to earing in cup drawing of Al2008-T4 sheet, Transactions of the ASME 65 (1998) 268-270.
DOI: 10.1115/1.2789037
Google Scholar
[12]
M. Grujicic, S. Batchu, Crystal plasticity analysis of earing in deep-drawn OFHC copper cups, J. Mater. Sci. 37 (2002) 753-764.
Google Scholar
[13]
Z. Zhao, W. Mao, F. Roters, D. Raabe, A texture optimization study for minimum earing in aluminum by use of a texture component crystal plasticity finite element method, Acta Mater. 52 (2004) 1003-1012.
DOI: 10.1016/j.actamat.2003.03.001
Google Scholar
[14]
X.M. Zhang, Z.Y. Yao, D.G. Liu, M.A. Chen, Z.Y. Chen, FEM simulation of the earing of 3104 aluminum sheets, Rare Metal Mater. Eng. 34 (2005) 581-585.
Google Scholar