Influence of Zn Content on the Microstructure and Properties of As-Annealed Al-Mn-Si Alloys

Article Preview

Abstract:

The effect of Zn addition on the microstructure, tensile properties and electrochemical properties of as-annealed Al-Mn-Si alloy was investigated through TEM observations, anodization metallography, tensile tests and Tafel polarization analysis. High density precipitates were found in the Zn-containing alloys and the alloy with 1.5 % Zn had the most uniform precipitation. The Zn element could restrain recrystallization of the alloy. Tensile test results indicated that Zn has a great effect on tensile strength of Al-Mn-Si alloy. The alloy with 1.8 % Zn addition had the highest ultimate tensile strength. The electrochemical testing results indicated that Zn element had great impact on the corrosion potential of the as-annealed alloys tested in 0.5% NaCl solutions. Alloying with Zn element could make the corrosion potential shift to negative direction but increase the resistance to pitting corrosion

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

937-942

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, Recent development in aluminum alloys for the automotive industry, Mat. Sci. Eng. A. 280 (2000) 37-49.

DOI: 10.1016/s0921-5093(99)00653-x

Google Scholar

[2] D. Geoffrey, Materials for Automobile Bodies, Butterworth-Heinemann, Oxford, 2004.

Google Scholar

[3] Y.J. Li, L. Arnberg, Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization, Acta Mater. 51 (2003) 3415-3428.

DOI: 10.1016/s1359-6454(03)00160-5

Google Scholar

[4] D.H. Xiao, J.N. Wang, D.Y. Ding, S.P. Chen, Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy, J. Alloy Compd. 343 (2002) 77-81.

DOI: 10.1016/s0925-8388(02)00076-2

Google Scholar

[5] Z. Szklarska-Smialowska, Pitting corrosion of aluminum, Corros. Sci. 41 (1999) 1743-1767.

DOI: 10.1016/s0010-938x(99)00012-8

Google Scholar

[6] J.T.B. Gundersen, A. Aytac, S. Ono, J. H. Nordlien, K. Nisancioglu, Effect of trace elements on electrochemical properties and corrosion of aluminium alloy AA3102, Corros. Sci. 46 (2004) 265-283.

DOI: 10.1016/s0010-938x(03)00159-8

Google Scholar

[7] M. Dehmas, P. Weisbecker, G. Geandier, P. Archambault, E. Aeby-Gautier, Experimental study of phase transformations in 3003 aluminum alloys during heating by in situ high energy X-ray synchrotron radiation, J. Alloys Compd. 400 (2005) 116-124.

DOI: 10.1016/j.jallcom.2005.03.062

Google Scholar

[8] Y. Liu, Y. F. Cheng, Role of second phase particles in pitting corrosion of 3003 Al alloy in NaCl solution, Mater. Corros. 61 (2010) 211–217.

DOI: 10.1002/maco.200905308

Google Scholar

[9] L. L. Shreir, R. A. Jarman, G. T. Burstein, Corrosion, 3rd ed., Butterworth-Heinemann, Oxford 2000.

Google Scholar

[10] A. C. Vieira, A. M. Pinto, L. A. Rocha, Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al-Si-Cu-Mg alloys in 0.05M NaCl, Electrochimica Acta. 56 (2010) 3821-3828.

DOI: 10.1016/j.electacta.2011.02.044

Google Scholar