Enhanced Ferromagnetism in Zn0.99Fe0.01O Modified by High Pressure

Article Preview

Abstract:

Polycrystalline bulk sample Zn0.99Fe0.01O was fabricated by a solid-state reaction method and modified by high-pressure treatment technique at a pressure of 5GPa. The structure, morphology and magnetic properties of these samples were investigated in order to clarify the effect of pressure on magnetism of Zn-Fe-O system. It is found that the particle size of the modified samples becomes larger as well as the physical contact between neighboring particles becomes better. All samples show obvious ferromagnetic behaviors at room temperature, and the magnetization of modified samples greatly increases. It is believed that the larger particle size and the closer contact between neighbouring particles resulted from high-pressure treatment cause stronger ferromagnetic exchange interaction in Zn-Fe-O system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

989-993

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. M. Wong and P. C. Searson, Appl. Phys. Lett., 74 (1999) 2939-2941

Google Scholar

[2] D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett., 82 (1999) 2552-2555

DOI: 10.1103/physrevlett.82.2552

Google Scholar

[3] H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchki, Appl. Phys. Lett., 76 (2000) 1905-1907

Google Scholar

[4] T. Jungwirth, J. Sinova, J. Masek, et al. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys., 78 (2006) 809-864

DOI: 10.1103/revmodphys.78.809

Google Scholar

[5] T. Dielt, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287 (2000) 1019-1022

Google Scholar

[6] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl, Phys. Part 2:39 (2000) L555-L558

Google Scholar

[7] K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79 (2001) 988-990

Google Scholar

[8] P. Sharma, A. Gupta, et al, Nat. Mater., 2 (2003) 673-677

Google Scholar

[9] J. C. A. Huang, H. S. Hsu, Y. M. Hu, et al. Appl. Phys. Lett., 85 (2004) 3815-3817

Google Scholar

[10] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Mater., 4 (2005) 173

Google Scholar

[11] A. Walsh, J. L. F. Da Silva, and S. H. Wei, Phys. Rev. Lett., 100 (2008) 256401

Google Scholar

[12] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X.-H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett., 100 (2008) 047206

Google Scholar

[13] Z. L. Lu, H. S. Hsu, Y. H. Tzeng, F. M. Zhang, Y. W. Du, and J. C. A. Huang, Appl. Phys. Lett., 95 (2009) 102501

Google Scholar

[14] Y. Q. Wang, S. L. Yuan, L. Liu, P. Li, X. X. Lan, Z. M. Tian, J. H. He, S. Y. Yin, Jour. Mag. Mag. Mater., 320 (2008)1423

Google Scholar

[15] A. Walsh, J. L. F. Da Silva, and S. H. Wei, Phys. Rev. Lett., 100 (2008) 256401

Google Scholar

[16] A. Kaminski and S. Das Sarma, Phys Rev Lett, 88 (2002) 247202

Google Scholar