Adjust the Content of Nickel in NiZnO Films by Vacuum Anneal

Article Preview

Abstract:

NiZnO films were grown on sapphire substrates by metal-organic chemical vapor deposition (MOCVD). Then the films were annealed in vacuum at different temperatures for 1h. The UV emission peak was blue shifted in the photoluminescence (PL) spectra and a dramatic shift of (002) diffraction peak to higher angle was observed in X-ray diffraction (XRD) pattern with the increasing anneal temperature. It showed the band gap and the lattice parameter of NiZnO had been affected by anneal in vacuum. From the X-ray photoelectron spectroscopy (XPS) of the NiZnO film, we can find that the anneal temperature had an important effect on the content of each element in NiZnO quantificationally. In addition, the value of x in NiZnO varied slightly with the anneal temperature increasing. The above phenomena indicated that anneal in vacuum could slightly adjust the percentage of Ni indirectly in NiZnO film and offer a good idea in NiZnO devices facture.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 562-564)

Pages:

11-14

Citation:

Online since:

August 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.R. Ryu, T.S. Lee, H.W. White, Appl. Phys. Lett. Vol. 83 (2003) p.87.

Google Scholar

[2] Y.R. Ryu, J.A. Lubguban, T.S. Lee, et al., Appl. Phys. Lett. Vol. 90 (2007) p.131115.

Google Scholar

[3] C.G. Van de Walle, Phys. Rev. Lett. Vol. 85 (2000) p.1012.

Google Scholar

[4] S. B Zhang, S.H. Wei, A. Zunger, Phys. Rev. B Vol. 63 (2001) p.075205.

Google Scholar

[5] U. Ozgur, Ya.I. Alivov, C. Liu, et al., J. Appl. Phys. Vol. 98 (2005) p.041301.

Google Scholar

[6] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films Vol. 23 (1993) p.27.

Google Scholar

[7] H. Ohta, M. Hirano, K. Nakahara, et al., Appl. Phys. Lett. Vol. 83 (2003) p.1029.

Google Scholar

[8] Z. J. Zhang, Y. Zhao, M.M. Zhu, Appl. Phys. Lett. Vol. 88 (2006) p.033101.

Google Scholar

[9] Y.H. Park, Y.H. Shin, S.J. Noh, et al., Appl. Phys. Lett. Vol. 91 (2007) p.012102.

Google Scholar

[10] K. Wang, Y. Vygranenko, A. Nathan, Thin Solid Films Vol. 516 (2008) p.1640.

Google Scholar

[11] S.H. Bae, S.Y. Lee, H.Y. Kim. S. Im, Opt Mater Vol. 17 (2001) p.327.

Google Scholar

[12] N.Y. Garces, N.C. Giles, L.E. H., et al., Appl. Phys Lett Vol. 80 (2002) p.1334.

Google Scholar

[13] J. Chen, T. Fujita., Jpn J Appl Phys Part 2 Vol. 42(2B) (2002) p. L203.

Google Scholar

[14] X.Q. Wang, G.T. Du, C.Z. Gu, et al., J. Phys. D: Appl. Phys. Vol. 35 (2002) p. L1.

Google Scholar

[15] F. K. Shan, B. I. Kim, G. X. Liu, et al., J. Applied Physics Vol. 95 (2004) p.4772.

Google Scholar

[16] K. Ogata, K. Koikeb, T. Taniteb, et al., J. Crystal Growth Vol. 251(2003) p.623.

Google Scholar

[17] Y.Z. Zhang, J.H. He, Z. Lu et al., Thin Solid Films Vol. 458(2004) p.161.

Google Scholar

[18] Y. Yao, T. Xie, The handbook of physics and chemistry vol. 111(1985).

Google Scholar