[1]
Zolotorevsky S Vadim, Belov A Nikolai, Glazoff V Michael. Casting Aluminum Alloys[M], Elsevier Press, 2007: 327-376.
DOI: 10.1016/b978-008045370-5.50007-9
Google Scholar
[2]
Q.G. Wang, D. Apelian, D.A. Lados, J. Light Met. 1 (2001) 85–97.
Google Scholar
[3]
Kobayashi T. Strength and fracture of aluminum alloys[J]. Materials Science and Engineering A, 2000, 280: 8-16.
Google Scholar
[4]
Dwivedi DK, Wear behaviour of cast hypereutectic aluminum silicon alloys, Mater Des, (2006).
Google Scholar
[5]
N. Eswara Prasad, D. Vogt, T. Bidlingmaier, A. Wanner, E. Arzt, High temperature, low cycle fatigue behaviour of an aluminium alloy (Al–12Si–CuMgNi), Materials Science and Engineering A276 (2000) 283–287.
DOI: 10.1016/s0921-5093(99)00492-x
Google Scholar
[6]
Ma Z. Effect of Fe-intermetallics and porosity on tensile and impact properties of Al–Si–Cu and Al–Si–Mg Cast Alloys, Ph. D. Thesis, August, (2002).
Google Scholar
[7]
H.R. Ammar, A.M. Samuel, F.H. Samuel, Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys, International Journal of Fatigue 30 (2008) 1024–1035.
DOI: 10.1016/j.ijfatigue.2007.08.012
Google Scholar
[8]
M. Avalle, G. Belingardi, M.P. Cavatorta, R. Doglione, Casting defects and fatigue strength of a die cast aluminium alloy: a comparison between standard specimens and production components, International Journal of Fatigue 24 (2002) 1–9.
DOI: 10.1016/s0142-1123(01)00112-8
Google Scholar
[9]
A.J. Moffat, S. Barnes, B.G. Mellor, P.A.S. Reed. The effect of silicon content on long crack fatigue behaviour of aluminum–silicon piston alloys at elevated temperature, International Journal of Fatigue 27(2005)1564-1570.
DOI: 10.1016/j.ijfatigue.2005.06.023
Google Scholar
[10]
D. Ovono Ovono, I. Guillot, D. Massinon,Study on low-cycle fatigue behaviours of the aluminium cast alloys,Journal of Alloys and Compounds 452 (2008) 425–431.
DOI: 10.1016/j.jallcom.2006.11.052
Google Scholar
[11]
Jorce M R, Styles C M, Reed P A S, Elevated temperature short crack fatigue behaviour in near eutectic Al–Si alloys, International Journal of Fatigue 25 (2003) 863–869.
DOI: 10.1016/s0142-1123(03)00157-9
Google Scholar
[12]
Srivatsan T S, An investigation of the cyclic fatigue and fracture behavior of aluminum alloy 7055 [J]. Materials and Design, 2002, 23: 141-151.
DOI: 10.1016/s0261-3069(01)00071-1
Google Scholar
[13]
Moffat A J, Barnes S, Mellor B G, Reed P A S, The effect of silicon on long crack fatigue behavior of aluminium-silicon piston alloys at elevated temperature [J]. International Journal of Fatigue, 2005, 27: 1564-1570.
DOI: 10.1016/j.ijfatigue.2005.06.023
Google Scholar
[14]
Goni J, Munoz A, Viviente J L, Liceaga J F, Fracture-analysis of the transition zone between unreinforced alloy and composite, Composites 24 (1993) 581–586.
DOI: 10.1016/0010-4361(93)90272-a
Google Scholar
[15]
Hurd N J, Fatigue performance of alumina reinforced metal matrix composites, Mater Sci Tech 4 (1988) 513-517.
Google Scholar
[16]
Jacques Stolarz, Olivier Madelaine-Dupuich, Thierry Magnin, Microstructural factors of low cycle fatigue damage in two phase Al-Si alloys, Materials Science and Engineering A, 299 (2001) 275-286.
DOI: 10.1016/s0921-5093(00)01428-3
Google Scholar